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Abstract—While big data workflows haven been proposed 
recently as the next-generation data-centric workflow 
paradigm to process and analyze data of ever increasing in 
scale, complexity, and rate of acquisition, a scalable distributed 
data model is still missing that abstracts and automates data 
distribution, parallelism, and scalable processing. In the 
meanwhile, although NoSQL has emerged as a new category of 
data models, they are optimized for storing and querying of 
large datasets, not for ad-hoc data analysis where data 
placement and data movement are necessary for optimized 
workflow execution. In this paper, we propose a NoSQL data 
model that: 1) supports high-performance MapReduce-style 
workflows that automate data partitioning and data-
parallelism execution. In contrast to the traditional 
MapReduce framework, our MapReduce-style workflows are 
fully composable with other workflows enabling dataflow 
applications with a richer structure; 2) automates virtual 
machine provisioning and deprovisioning on demand 
according to the sizes of input datasets; 3) enables a flexible 
framework for workflow executors that take advantage of the 
proposed NoSQL data model to improve the performance of 
workflow execution. Our case studies and experiments show 
the competitive advantages of our proposed data model. The 
proposed NoSQL data model is implemented in a new release 
of DATAVIEW, one of the most usable big data workflow 
systems in the community. 
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I.  INTRODUCTION 
Big data workflows have recently emerged as the next 

generation of data-centric workflow technologies to address 
the five "V" challenges of big data [12]: volume, variety, 
velocity, veracity, and value [20, 21, 23, 25]. While its 
precedent, scientific workflows, focus on dataflow and 
automation management [17], big data workflows focus on 
large-scale data processing and analytics with a “scale-out” 
architecture and a “moving-computation-to-data” processing 
paradigm. More formally, a big data workflow is the 
computerized modeling and automation of a process 
consisting of a set of computational tasks and their data 
interdependencies to process and analyze data of ever 
increasing in scale, complexity, and rate of acquisition. The 
coining of the term “big data workflows” is timely and 
important to recognize the continuing relevance and 
importance of workflow technologies in data processing and 
management, as well as the challenges and opportunities of 
big data research in the workflow community[12]. While 
more and more big data tools have been developed in recent 
years to address the big data deluge in both science [20] and 

business [21], the gap between the capability of data 
collecting and the power of data processing and analysis 
continues to increase. One category of such tools are NoSQL 
databases [22], which deliver high read and write 
performance by automating the data distribution and retrieval 
over a cluster of tens of thousands of machines [24]. In 
contrast to their SQL counterpart, NoSQL databases often 
relax the traditional ACID properties of transactions and 
introduce restrictions on its query language, such as no-
support-for-join, in favor of high performance of read and 
write.  The wide adoption of NoSQL techniques in big data 
applications is attributed to, among other things, their large 
scalability, high fault-tolerance, flexible data models, and 
high performance query capability [24]. 

However, the power of big data not only lies in storing 
and querying large datasets, but also in performing efficient 
ad hoc sophisticated analysis over such datasets to shorten 
the cycle of “from data to insight and to value”. One major 
research question is: Is it possible to leverage the power of 
NoSQL techniques in big data workflow systems to improve 
the performance of workflow execution? If yes, how? One 
approach is to integrate an existing NoSQL database system 
into a big data workflow system. This approach, however, 
will not unleash the full power of neither as data movement 
between the NoSQL database and the workflow engine will 
become the bottleneck. Moreover, many of the workflow 
optimization opportunities will not become available under 
the constraints of a NoSQL database, which decides the 
placement of data according to partitioning strategies that are 
optimized for querying, not for ad hoc analysis, in which 
data placement, replication, and data movement need to be 
decided on the fly according to the structure and data access 
patterns of a workflow [25, 26]. Therefore, we take another 
approach in this research, in which we develop our own 
NoSQL collectional data model, which leverages some of the 
capabilities of existing NoSQL data models, while enriching 
in capabilities, such as flexible MapReduce workflows, 
workflow executors, and optimization of workflow 
execution. 

In this paper, we propose a NoSQL data model that: 1) 
supports high-performance MapReduce-style workflows that 
automate data partitioning and data-parallelism in workflow 
execution; in contrast to the traditional MapReduce 
framework, our MapReduce-style workflows are fully 
composable with other workflows, and thus enable dataflow 
applications with a richer structure; 2) automates virtual 
machine provisioning and deprovisioning on demand 
according to the sizes of input datasets; 3) enables a flexible 
framework for workflow executors that take advantage of  



the proposed NoSQL data model to improve the performance 
of workflow execution. Our case studies and experiments 
show the competitive advantages of our proposed data 
model. The proposed NoSQL data model is implemented in 
a new release of DATAVIEW, one of the most usable big 
data workflow systems in the community. 

II. AN OVERVIEW OF DATAVIEW 
In Fig. 1, we present the overall architecture of 

DATAVIEW, which enriches the original architecture 
described in [12] with a refined design for the Workflow 
Engine. DATAVIEW consists of seven subsystems: the 
Webench is a Web-based interface that supports user 
interaction, workflow visualization, data presentation, and 
system configuration. The Data Product Manager features 
the proposed NoSQL collectional data model and a rich set 
of other data types, including relational, files, and scalar 
types. The Task Manager supports a single-component based 
task model that separates registration from configuration and 
eases the process of registering external functional 
components (such as Web services) into primitive workflows 
[13]. The Task Manager is also responsible for the run-time 
execution of primitive workflows. The Cloud Resource 
Manager (CRM) provides the provisioning and 
deprovisioning capabilities of cloud resources, including 
both virtual machines and storage resources. The Provenance 
Manager manages the data lineage and derivation history of 
data products for the reproducibility and validation of 
workflow execution results [18]. The Workflow Monitor 
supports the monitoring of workflow execution status and 
progress and exception handling [19]. Finally, the Workflow 
Engine is at the heart of the DATAVIEW system, 
responsible for overall workflow orchestration, scheduling, 
and the coordination and collaboration of all subsystems.  

This paper enriches the Workflow Engine with the notion 
of “executors”, which abstracts the execution platform that a 
workflow will be executed at runtime. Two categories of 
workflow executors are supported: on-premises workflow 
executor, which supports the execution of a workflow on a 
single DATAVIEW server, and cloud workflow executor, 
which supports the execution of a workflow in the cloud 
(e.g., Amazon EC2). Moreover, two types of cloud workflow 
executors have been implemented: type-A cloud workflow 
executor supports a clustering algorithm that partitions a 
workflow into a number of workflow clusters, with each 
workflow cluster executed in one virtual machine; type-B 
cloud workflow executor supports MapReduce-style 
workflows, which automates data partitioning, virtual 
machine provisioning and deprovisioning, and scalable 
execution of workflows. Both type-A and type-B workflow 
executors exploit the proposed NoSQL collectional model 
for improved performance of workflow execution. 

III. NOSQL COLLECTIONAL DATA MODEL 
A big data workflow represents a multiple-step data 

analysis pipeline by chaining several data analysis modules 
together via data links that connect the output of one analysis 
module to the input of another analysis module. A big data 
focuses on large-scale data processing and analytics with a 

“scale-out” architecture and a “moving-computation-to-data” 
processing paradigm. Big data imposes challenges in the 
workflow development at both the primitive and composite 
workflow level. A primitive workflow is the workflow that 
contains no sub-workflows in it. On the other hand, a 
composite workflow has one or more sub-workflows inside 
it. Our original collectional data model [1] is a counterpart of 
relational data model that supports creation of hierarchically 
organized data in a nested manner. In our new NoSQL 
collectional data model, we extend our original collectional 
data model to improve the performance of big data workflow 
execution. 

Big data workflow is executed in the Cloud. A cloud 
consists of a set of virtual machines that are used to store the 
partitioned input data, execute the workflow and store the 
output data generated by the workflow. A big data workflow 
is defined as follows: 
Definition 1. A big data workflow w is a 8-tuple (IP, OP, 
D, T, S, Consumer, Producer, DataType), where  
• IP is the set of input ports for workflow w. Each 

individual input port is denoted by 𝑖𝑝! , 𝐼𝑃 =
𝑖𝑝!, 𝑖𝑝!,… , 𝑖𝑝! . IP^ is the set of intermediate input 

ports for workflow w and IP^ ⊆  IP. 
• OP is the set of output ports for workflow w. Each 

individual output port is denoted by 𝑜𝑝! , 𝑂𝑃 =
𝑜𝑝!, 𝑜𝑝!,… , 𝑜𝑝! . 

• 𝐷  is the set of workflow datasets. Each individual 
dataset is denoted by 𝑑! , 𝐷 = 𝑑!,𝑑!,𝑑!,… ,𝑑! . dj 
can be either connected to ipm ∈ 𝐼𝑃 or opq ∈ 𝑂𝑃. 

• 𝑇 is the set of workflow tasks. Each individual task is 
denoted by 𝑡! , 𝑇 = 𝑡!, 𝑡!, 𝑡!,… , 𝑡! . Each task can 
have one or more input and output ports. 𝑡! . 𝑖𝑝! shows 
the mth input port of task 𝑡! . subsequently 𝑡! . 𝑜𝑝!shows 
the qth output port of task ti. 

• 𝑆:𝐷 → 𝑅!  is the dataset size function.  S 𝑑! ,   𝑑! ∈ 𝐷 
returns the size of the dataset 𝑑!. The size of a dataset 

Fig. 1.  Architecture of DATAVIEW. 



is defined in some pre-determined unit such as 
MegaBytes, GigaBytes, TeraBytes, etc. 𝑅!  is the set 
of positive real number.  

• 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟:𝑇 → 2^𝑇 is the task-task function. 
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟(𝑡!),   𝑡! ∈ 𝑇 returns the set of tasks that   𝑡! 
is directly connected to and require the output of   𝑡!  for 
their inputs. 

• 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟:𝑇 → 2^𝑇 is the task-task function. 
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟(𝑡!),   𝑡! ∈ 𝑇 returns the set of tasks that are 
connected to  𝑡! directly and  𝑡!   require their output as 
its inputs.  

• DataType:D → {“Scalar”, “File”, “Relational”, 
“Collectional”} is the data-type function. 
DataType(dj) returns the type of data, dj □ 

Our NoSQL collectional data model supports registering 
hierarchically organized and collection oriented datasets. 
We formally define a NoSQL Collectional Data Model as 
follows: 
Definition 2. A NoSQL Collectional Data Model A 
NCDM of level K can be formalized by ℂ = ([C1, C2, …, 
CK], V, R, I, K), where: 

• I  and K  are two positive integers and 1 ≤  I ≤ K.  
• [C1, C2, …, CK] is a list called the primary key of 

the collection; therefore functional dependency 
(C1, C2, …, CK) → V holds. 

• A prefix [C1, C2, …, CI] of [C1, C2, …, CK] is called 
a partition key of G, all tuples that correspond to 
the same value of [C1, C2, …, CI] will be mapped 
to the same virtual machine in physical 
organization. 

• V is an attribute for the value, it can take the type of 
a scalar value (INTEGER, STRING, FLOAT, 
DOUBLE, RELATIONNAME) or a relational 
name of schema specified by R. R is a relational 
schema. □ 

   In Fig. 2 we show an example of OpenXC collectional data 
set from the automotive domain. It consists of three key 
attributes, drivers, vehicles and traces, and value is a 
relational name with three attributes <Name, Timestamp, 
Value>. In Fig. 3 we show the OpenXC collectional data set 
that is partitioned and stored in three virtual machines, vm1-
vm3. 
Definition 3. A Data Partitioner γ is used to partition a 
collectional instance c of schema ℂ = ([C1, C2, …, CK], V, R, 
I, K) into c1, c2, …,  cM  such that c1 ∪ c2 ∪ …∪ cM ≡ c, 
where cm is the partition for virtual machine m. Let 𝛼: C1 × 
C2  × …× CI → [-263, 263-1] be a function that computes the 
token for a given collectional tuple t of c using only the value 
of the partition key (possibly composite). Let 𝛽: [-263, 263-1] 
→ [1, M], then we have γ(t) = 𝛽(𝛼(𝜋(𝑡, 𝐼))) where 𝜋 𝑡, 𝐼  is 
the projection of t over the first I attributes. □  
   Our proposed Map construct extends our previous notion 
of the Map workflow construct in [3] in two directions: 1) 
our Map constructs abstracts a data partitioner γ implicitly 
where the primary key of c is used as the partition key; 2) 

our Map constructs supports fully the NoSQL collectional 
data model, and thus fully exploits the data parallelism and 
the dynamic resource provisioning capability of our cloud 
resource manager.   
Definition 4. The Map construct abstracts the partitioning 
and distribution of a large collectional data product over a 
set of M virtual machines for high-performance parallel 
processing. Given a workflow w([i1, i2, …, in], o) with n 
input ports and one output port, where i1 takes a collectional 
data product as its input, we have Map(w)(c, i2,…, in) 
= w(cm,  𝑖2,… , 𝑖n)!

!!! . That is, the output of Map(w) on 
collectional data product c is equal to the union of the 
application of w on each partition cm. In order to apply Map 
on w, w must satisfy the following constraints: 1) i1 takes a 
collectional data product of schema  ℂ = ([C1, C2, …, CK], 
V, R, I, K) as input; 2) w is a primitive workflow or a 
composite workflow with no nesting Map/Reduce 
constructs; 3) w(c, i2,…, in) = 𝑤(𝑡, 𝑖2,… , 𝑖n)!∊! . That is, the 
output of w on input collection c is equal to the union of the 
application of w on each tuple in c. □ 
  Our proposed Reduce construct extends our previous 
notion of the Reduce workflow construct in [3] in two 
directions: 1) automatic shuffling and redistribution of the 
input collectional dataset into multiple virtual machines; 2) 
executing the workflow that performs aggregation on the 
input collectional dataset based on the user provided key 
attribute in multiple virtual machines in parallel.   
Definition 5. The Reduce construct abstracts the automatic 
shuffling, redistribution, aggregation of a large collectional 
data product based on a given key attribute CI over a set of 
M virtual machines for high-performance parallel 
processing. Given a workflow w([i1, i2, …, in], o) with n 
input ports and one output port, where i1 takes a collectional 
data product as its input, we have Reduce(w, CI)(c, i2,…, in) 

Fig. 3. Example of OpenXC data partitioner 

Fig. 2.  OpenXC collectional data product. 



=   w(cm,  𝑖2,… , 𝑖n)!
!!! . That is, the output of Reduce(w, CI) 

on collectional data product c is equal to the union of the 
application of w on each group cm. In each group cm, for t1, 
t2 ∊ 𝑐m we have π(t1,  CI)  =  π(t2,  CI). That is, all tuples in cm  
have the same value for CI.  . □ 
   Note that in the Map construct, a Map workflow run is 
applied to each tuple in c, while in the Reduce construct, a 
Reduce workflow run is applied to a group of tuples in c, 
with each group shares the same value for the given 
attribute CI. Therefore, the Reduce construct is to be applied 
to a workflow that implements an aggregation function that 
is applicable to each group of the given input collectional 
data product as reshuffled according to the given key 
attribute.  
   A workflow executor takes a big data workflow, 
provisions virtual machines in the cloud, partitions the input 
collectional data product, executes the tasks of the workflow 
on different virtual machines, and finally deprovisions the 
assigned virtual machines and presents the output of the 
workflow to the user. While type-A workflow executor is 
used to execute a graph-based workflow, individual 
Map/Reduce workflow tasks are executed by the type-B 
workflow executor. We present the algorithms for type-A 
and type-B workflow execution in the next section. 

IV. ALGORITHMS FOR WORKFLOW EXECUTORS  
In this section, we propose three new algorithms that are 
implemented in our cloud workflow executor. We 
automatically provision and deprovision virtual machines 
based on both the size of input datasets connected to the 
workflow and the structure of the workflow.  
   We provide two types of parallelism. First, we provide a 
workflow level parallelism, type-A, by leveraging the 
structure of the workflow, we cluster the given workflow 
into multiple workflow clusters. Each workflow cluster 
consists of a set of tasks that are executed in the same 
virtual machine. Different workflow clusters are executed in 
different virtual machines in parallel. 

Second, we provide a task level parallelism, type-B, by 
leveraging our newly proposed NoSQL collectional data 
model. We automatically partition the input datasets into 
multiple virtual machines and the task is mapped to those 
machines and executed in parallel. We demonstrate 
Algorithm 1, 2 and 3 by using the example shown in Fig. 4.       

A. Task Clustering  
   The goal of the Task Clustering Algorithm (T-Cluster) is 
to generate an initial workflow schedule that is based on the 
structure of the workflow. The cluster map consists of a list 
of pairs <ti, VMID>, such that ti is the name of the task and 
VMID is the identifier of a virtual machine. Each task in a 
workflow consists of a set of producers and a set of 
consumers that are connected to it, except for the entry and 
exit tasks. The entry tasks in the workflow do not contain 
any producer and instead a set of input datasets are 
connected to it. In the same manner, the exit tasks do not 

contain any consumer and instead a set of output stubs are 
connected to it, in order to visualize the final results of the 
workflow.  

 In Fig. 4, we show an example big data workflow w 
from the automotive domain that is used to query the 
OpenXC dataset and compute the speeding and braking 
behavior of the driver. In Algorithm1, in line 4, we get all the 
tasks in w in some topological order and assign it to list ts. 
We validate the correctness of our algorithm for different 
topological order of ts. Let ts = <T1, T2, T3, T4, T5, T6, T7, T8, 
T9, T10, T11, T12, T13, T14, Tend>. In line 5, we iterate through 
each task ti in ts and add ti to the cluster map d. All the entry 
tasks in w are added to list en = <T1, T2, T3>. Between lines 8 
and 32, we iterate through each task ti in ts and add the 
consumer of ti to list cs. For example consumers of T1 are 
<T4, T7>. If task ti is an element of list en, then we assign 
VMID to task ti and increment VMID. 

 For example, <T1,1> is added to the map since the 
default value of VMID = 1. If task ti is not an element of list 
en, then we iterate through each consumer c in cs. For the 
first consumer, we assign the same VMID as that of the task 
and for the other consumers, we assign a different VMID. 
For example, for the consumers of T1, the following pairs are 
added, <T4,1>, <T7,2>. VMID is incremented every time a 
new pair is added to the map. The final map d = <(T1, 1), 
(T2,3), (T3,5), (T4,2), (T5,4), (T6,5), (T7,1), (T8,2), (T9,3), 
(T10,4), (T11,1), (T12,2), (T13,3), (T14,4), (Tend,1)> is returned 
as an output for workflow w. The output map d of w consists 
of five clusters assigned to five virtual machines. 

B. Type-A Cloud Workflow Executor 
The goal of the type-A workflow executor is to reduce 

the workflow makespan for a given workflow by running 
each cluster of the workflow in parallel in multiple virtual 
machines in the cloud. In Algorithm 2, in line 4, we get the 
cluster map d from Algorithm1(T-Cluster) for the workflow 
w. In line 5, we get all the tasks in workflow w in some 
topological order and store it in list ts. Between lines 6 and 
24, we iterate through all task ti in ts in parallel. We use 

Fig. 4. An example big data workflow developed in 
DATAVIEW.  
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inputready to determine whether all the datasets are available 
in order to execute a task. In line 7, we set inputready[ti] to 
the total number of non-intermediate input ports of ti. In Fig. 
4, for example inputready[T1] = 1, inputready[T4] = 0. 
At each iteration, every task except the entry tasks will wait 
until all the input datasets for the task becomes ready. For 
example, Tend will continue to wait until the tasks {T11, T12, 
T13, T14, T6} are executed and the data movement from {T11, 
T12, T13, T14, T6} to Tend is completed. Between lines 13 and 
23, we iterate through each consumer ci of task ti in parallel. 
If the consumer ci and task ti are assigned to different virtual 
machines, then we move the data from d[ti] to d[ci]. We 
increment inputready[ci] through a locking mechanism so 
that at a particular time only one consumer of one task can 
increment it. For each consumer ci, the number of input 
ports is calculated. If inputready[ci] is equal to the total 
number of input ports of ci, then we send a signal to the 
consumer ci as a wake up call. At that point inputready[ci] is 
validated to check whether all the datasets needed to execute 
ci is ready. If the datasets are ready, then ci is executed and 

the consumers of ci are processed. For example only after 
execution of the tasks {T11, T12, T13, T14, T6}, the signal to 
wake up Tend is sent from T14.  

C. Type-B Cloud Workflow Executor 
The goal of the type-B workflow executor is to reduce the 
task makespan for any task that has the Map or the Reduce 
construct applied on it. A construct is a high order function 
that is used to transform any given function into another 
sophisticated function. In our case, a construct is applied on 
a task to transform the task into a Map or a Reduce task. 
The Map construct is applied to a task that performs 
extracting, filtering and transformation. The Reduce 
construct is applied to a task that performs aggregation, 
summarization, filtering and transformation.  Besides, the 
Map and Reduce constructs also differ in the way the input 
dataset is partitioned. Our data partitioner, which is inspired 
from Cassandra uses our custom hash function, to distribute 
any given NoSQL collectional dataset into multiple virtual 
machines. Our cloud infrastructure manages a ring with a 
range for each virtual machine. We assign multiple tokens 
for each range. The advantage foreseen in our approach is 
that we support the dynamic addition and deletion of virtual 
machines and still manage to keep our key to token mapping 
information intact. We plan to discuss our partitioner as a 
separate research article.  

Algorithm2:	  Type-‐A	  workflow	  executor	  
1:	  	  function Type-A 
2:  input: workflow specification w 
3:  output: exit code 
4:  d ←  T-Cluster(w) 
5:  ts ← all tasks in w sorted in a topological order 
6:  forall task ti  ∈ ts in parallel 
7:    inputready[ti] = |ti.IP|- |ti.IP^| 
8:    while (inputready[ti] < | ti.IP|) 
9:      wait(sig[ti]); 
10:  end while 
11:  execute ti on d[ti] 
12:  cs ← all consumers of ti 
13:  forall consumer ci  ∈ cs in parallel 
14:      if (d[ti] ≠ d[ci]) 
15:         Move OutputOf (ti, ci) from d[ti] to d[ci] 
16:      end if 
17:      lock → acquire() 
18:         inputready[ci] = inputready[ci] + 1 
19:      lock → release() 
20:      if (inputready[ci] = |ci.IP|) 
21:         signal(sig[ci]); 
22:      end if 
23:  end in parallel 
24: end in parallel 
25: return SUCCESS 
26: end function 

Algorithm1:	  Task	  Clustering	  	  
1:	  	  function T-Cluster 
2:  input: workflow specification w 
3:  output: d, a map storing task-VM assignments.  
4:  ts ← all tasks in w sorted in a topological order 
5:  for each t ∈ ts do d[t] ← 0 end for  
6:  en ← all entry tasks of w 
7:  VMID = 1, fc = false 
8:  for each t ∈ ts 
9:     cs ← all consumers of t 
10:   if (t ∈ en) 
11:      d[t] ← VMID 
12:      for each c ∈ cs 
13:         if (d[c] = 0) 
14:            d[c] ← VMID 
15:            VMID ← VMID + 1 
16:         end if              
17:        end for 
18:   else 
19:        fc = true 
20:        for each c ∈ cs 
21:           if (d[c] = 0)  
22:              if (fc = true) 
23:                 d[c] ← d[t] 
24:                 fc = false 
25:              else  
26:                 d[c] ← VMID 
27:                VMID = VMID + 1 
28:              end if 
29:            end if 
30:         end for 
31:   end if  
32:  end for  
33:  return d 
34:  end function 



 
    We apply the Map construct on the tasks {T1, T2, T3} and 
the Reduce construct on tasks {T4, T5, T6}  on the big data 
workflow w shown in Fig. 4. In Algorithm 3, in line 4, we 
initialize out, z, n and vms. In line 5, we get all the input 
datasets connected to task ti and store them in in. Between 
lines 6 and 20, we iterate through all the datasets d in in. In 
line 7, we validate whether the type of the dataset d is 
collectional. On validation success, we compute the total 
number of virtual machines dynamically based on the size 
of the dataset and the user configured value for partition size 
(ps) and total number of task runs per virtual machine 
(RunsPerVM). In line 10, we provision the virtual machines. 
In line 11, we validate the type of construct applied to task 
ti. If the type of the construct is a Map, then we partition the 
data with all the key attributes in dataset d. If the type of the 
construct is Reduce, then we partition the data by a user 
provided key attribute rk. For all other datasets connected to 
task ti  that are not of type collectional, we move the original 
dataset to all the virtual machines. Between lines 21 and 24, 
we run task runs of ti in parallel in all the virtual machines 
vms. The results from all task runs are combined together 
and returned as the final output out. 

V. CASE STUDY AND EXPERIMENTS 
In our DATAVIEW system, we implemented a big data 

workflow called the Autoanalytics workflow to show the 
strength of our proposed NoSQL collectional data model 
and the scalability features. The Autoanalytics workflow is 
used to analyze the data collected from vehicles and provide 
insights on the risk level based on the drivers driving 
behavior. OpenXC is an open source platform that is used as 
a source to generate a wealth of data from the vehicle 
through a hardware device that is installed in the car. As the 
average adult driver in the US may generate up to 75 Gb of 
such driving data annually, the total amount of data 
generated in the US may exceed 14 Eb (1018 bytes) per year 
[12, 16]. We collected data from X drivers for one hour with 
X= 5, 10, 15, 20, 25 resulting datasets of size in the range of 
1GB-5GB. Because of the dynamic nature of the growth of 
size of the dataset and the 5V big data challenges incurred in 
the domain, we consider our Autoanalytics workflow as a 
big data workflow. 

In Fig. 5, we show the Autoanalytics big data workflow. 
The first step is ExtractDriverDetails that accepts the 
collectional OpenXC dataset as input and filter by their 
VehicleId. The second step is ComputeSpeedDistribution 
that is used to find the topK vehicle speed and the distance 
driven without pressing the brake. The third step is 
AddressFinder that is used to find the geographic location 
of the vehicle during the time at which the signal was 
captured. We use Google Places API to determine the 
address from the latitude and longitude signal values. The 
fourth step is ComputeRoadType that is used to find the type 
of the road (highway or local) for each geographic location 
computed in the third step. The fifth step is 
SpeedLimitFinder that is used to find the speed limit posted 
on those geographic locations based on the road type. The 
sixth step is ValidateVehicleSpeed that is used to compare 
the vehicle speed generated in step-2 with the actual speed 
limit in the closest latitude longitude. The output of the task 
indicates if the driver was below or over the speed limit. 
The 7th step is ComputeSimilarityScore that is used to 
compare several drivers with different traces to identify the 
similarity between them. The final output of the 
ComputeSimilarityScore generates a report to show the list 
of good drivers and bad drivers along with their driving 
score.  

We apply the type-B Map construct on step-1, step-2 and 
executed them in the range of 1-25 virtual machines 
simultaneously. We apply the type-B Reduce construct on 
step-7 by (key=DriverName) to partition/group all the signal 
values associated with each driver into the same machine. 
We apply the type-A cloud workflow executor for 25 
drivers and executed the workflow in the range of 1-25 
virtual machines in the EC2 cloud. We performed our 
experiments in the OpenXC dataset with the range of 1-5GB 
on 1 to 25 machines.  Our experimental results show that 
our type-A executor performed well by reducing the 
workflow makespan. And we applied the Map and the 

Algorithm3:	  Type-‐B	  workflow	  executor	  
1:	  	  function type-B 
2:  input: task name ti, type of construct toc,  
     partition size ps, number of task runs per  
     virtual machine RunsPerVM, partition key  
     for reduce rk 
3:  output: final output of task t 
4:  out ← [], vms ← [], z = 0, n = 0 
5:  in ← ti.inputdatasets;  
6:  for each dataset d ∈ in 
7:    if (Type (d) = collectional) 
8:      z = size of d 
9:      n = z / ps / RunsPerVM 
10:    vms ← CRM.provision(n) 
11:    if (toc = map) 
12:        ParKeys ← get all keys of d 
13:    else if (toc = reduce) 
14:        ParKeys ← rk 
15:    end if 
16:    Partition(d, ParKeys) to vms 
17:   else    
18:     Move(d) to vms 
19:   end if 
20: end for  
21: forall vm ∈ 𝑣𝑚𝑠 in parallel 
22:   result ← Execute task ti in vm 
23:   out ← out ∪ result 
24: end in parallel 
25: return out 
26: end function 



Reduce construct on the individual tasks in the workflow. 
Our type-B executor performed well by reducing the 
individual task makespan and as a whole also reducing the 
workflow makespan even more. In Fig.6, we show the 
experimental results that were performed using the OpenXC 
dataset in the Amazon EC2 cloud environment. 

VI. RELATED WORK 
 Existing workflow management systems such as Kepler 

[4], VisTrails [6] and Taverna [5] do not support a scalable 
data model that is suitable for processing big data in the 

cloud. Kepler proposes a collection-oriented model in which 
the data is nested in different levels as collections and sub 
collections with arbitrary data type. The data model is 
represented using XML and is semi structured in nature, 
whereas our collectional data model is well structured and is 
much simple to process big data workflows. VisTrails 
provide a good visualization framework and support a semi-
structured representation of the data, it strongly lacks in 
storing hierarchical information such as collections and the 
workflow engine does not support scalable workflow 
execution in the cloud. Taverna supports singleton values 
such as strings, byte arrays and list of singletons. Lists are 
defined to a specific level and are not capable to handle 
nested data to arbitrary levels. Fei et al. [1, 3] propose a 
collectional data model to process scientific workflows in 
one machine and a set of well-defined operators and 
constructs. The proposed model and the operators are not 
scalable and do not consider challenges of data partitioning 
and workflow execution in the cloud. Wang et al. [2] 
propose an approach to improve the programmability and 
scaling flexibility of big data application through different 
parallelization techniques. They propose a list of DDP 
patterns that are used to process key value pairs and 
parallelize the execution of the user-defined functions. 

Fig.5. An automative OpenXC big data workflow 

Fig. 6. Workflow makespans by varying the number of virtual machines and datasets. 



Although their approach is similar to the workflow 
constructs proposed by us, our Map and Reduce workflow 
constructs can be applied to any given workflow by 
leveraging our proposed NoSQL collectional data model.  

Existing big data NoSQL databases are classified into the 
following four category of databases: 1) key-value databases 
[7], such as Memcached and Redis, 2) document-oriented 
databases [8], such as RavenDB, MongoDB and CouchDB, 
3) column-family databases [9, 11], such as Apache 
Cassandra and HBase, 4) graph databases [10], for example: 
Neo4J, FlockDB and GraphDB. The existing NoSQL 
databases are not suitable for big data workflows because 
they do not support ad hoc sophisticated analysis and is not 
extendible to workflow optimization.  

None of the above techniques provides a scalable data 
model for data centric big data workflows. In this paper, we 
propose a NoSQL collectional data model that is both 
scalable and at the same time is well structured for 
performing ad hoc analysis on large datasets. Moreover, we 
also propose two new cloud workflow executors that take 
advantage of the proposed NoSQL data model to improve 
the performance of workflow execution. 

VII. CONCLUSIONS AND FUTURE WORK 
    In this paper, we propose a NoSQL data model that: 1) 
supports high-performance MapReduce-style workflows 
that automate data partitioning and data-parallelism 
execution. In contrast to the traditional MapReduce 
framework, our MapReduce-style workflows are fully 
composable with other workflows enabling dataflow 
applications with a richer structure; 2) automates virtual 
machine provisioning and deprovisioning on demand 
according to the sizes of input datasets; 3) enables a flexible 
framework for workflow executors that take advantage of 
the proposed NoSQL data model to improve the 
performance of workflow execution. We presented a case 
study and experiments that show the competitive advantages 
of our proposed NoSQL collectional data model and the 
cloud workflow executors. Ongoing work includes 
implementing a new set of workflow constructs that can be 
used for efficient parallel processing. 
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