
A NoSQL Data Model For Scalable
Big Data Workflow Execution

Aravind Mohan, Mahdi Ebrahimi, Shiyong Lu, Alexander Kotov
Wayne State University

Detroit, MI, USA
 {amohan, mebrahimi, shiyong, kotov}@wayne.edu

Abstract—While big data workflows haven been proposed
recently as the next-generation data-centric workflow
paradigm to process and analyze data of ever increasing in
scale, complexity, and rate of acquisition, a scalable distributed
data model is still missing that abstracts and automates data
distribution, parallelism, and scalable processing. In the
meanwhile, although NoSQL has emerged as a new category of
data models, they are optimized for storing and querying of
large datasets, not for ad-hoc data analysis where data
placement and data movement are necessary for optimized
workflow execution. In this paper, we propose a NoSQL data
model that: 1) supports high-performance MapReduce-style
workflows that automate data partitioning and data-
parallelism execution. In contrast to the traditional
MapReduce framework, our MapReduce-style workflows are
fully composable with other workflows enabling dataflow
applications with a richer structure; 2) automates virtual
machine provisioning and deprovisioning on demand
according to the sizes of input datasets; 3) enables a flexible
framework for workflow executors that take advantage of the
proposed NoSQL data model to improve the performance of
workflow execution. Our case studies and experiments show
the competitive advantages of our proposed data model. The
proposed NoSQL data model is implemented in a new release
of DATAVIEW, one of the most usable big data workflow
systems in the community.

Keywords- Big Data Workflows; NoSQL; Clouds;

I. INTRODUCTION
Big data workflows have recently emerged as the next

generation of data-centric workflow technologies to address
the five "V" challenges of big data [12]: volume, variety,
velocity, veracity, and value [20, 21, 23, 25]. While its
precedent, scientific workflows, focus on dataflow and
automation management [17], big data workflows focus on
large-scale data processing and analytics with a “scale-out”
architecture and a “moving-computation-to-data” processing
paradigm. More formally, a big data workflow is the
computerized modeling and automation of a process
consisting of a set of computational tasks and their data
interdependencies to process and analyze data of ever
increasing in scale, complexity, and rate of acquisition. The
coining of the term “big data workflows” is timely and
important to recognize the continuing relevance and
importance of workflow technologies in data processing and
management, as well as the challenges and opportunities of
big data research in the workflow community[12]. While
more and more big data tools have been developed in recent
years to address the big data deluge in both science [20] and

business [21], the gap between the capability of data
collecting and the power of data processing and analysis
continues to increase. One category of such tools are NoSQL
databases [22], which deliver high read and write
performance by automating the data distribution and retrieval
over a cluster of tens of thousands of machines [24]. In
contrast to their SQL counterpart, NoSQL databases often
relax the traditional ACID properties of transactions and
introduce restrictions on its query language, such as no-
support-for-join, in favor of high performance of read and
write. The wide adoption of NoSQL techniques in big data
applications is attributed to, among other things, their large
scalability, high fault-tolerance, flexible data models, and
high performance query capability [24].

However, the power of big data not only lies in storing
and querying large datasets, but also in performing efficient
ad hoc sophisticated analysis over such datasets to shorten
the cycle of “from data to insight and to value”. One major
research question is: Is it possible to leverage the power of
NoSQL techniques in big data workflow systems to improve
the performance of workflow execution? If yes, how? One
approach is to integrate an existing NoSQL database system
into a big data workflow system. This approach, however,
will not unleash the full power of neither as data movement
between the NoSQL database and the workflow engine will
become the bottleneck. Moreover, many of the workflow
optimization opportunities will not become available under
the constraints of a NoSQL database, which decides the
placement of data according to partitioning strategies that are
optimized for querying, not for ad hoc analysis, in which
data placement, replication, and data movement need to be
decided on the fly according to the structure and data access
patterns of a workflow [25, 26]. Therefore, we take another
approach in this research, in which we develop our own
NoSQL collectional data model, which leverages some of the
capabilities of existing NoSQL data models, while enriching
in capabilities, such as flexible MapReduce workflows,
workflow executors, and optimization of workflow
execution.

In this paper, we propose a NoSQL data model that: 1)
supports high-performance MapReduce-style workflows that
automate data partitioning and data-parallelism in workflow
execution; in contrast to the traditional MapReduce
framework, our MapReduce-style workflows are fully
composable with other workflows, and thus enable dataflow
applications with a richer structure; 2) automates virtual
machine provisioning and deprovisioning on demand
according to the sizes of input datasets; 3) enables a flexible
framework for workflow executors that take advantage of

the proposed NoSQL data model to improve the performance
of workflow execution. Our case studies and experiments
show the competitive advantages of our proposed data
model. The proposed NoSQL data model is implemented in
a new release of DATAVIEW, one of the most usable big
data workflow systems in the community.

II. AN OVERVIEW OF DATAVIEW
In Fig. 1, we present the overall architecture of

DATAVIEW, which enriches the original architecture
described in [12] with a refined design for the Workflow
Engine. DATAVIEW consists of seven subsystems: the
Webench is a Web-based interface that supports user
interaction, workflow visualization, data presentation, and
system configuration. The Data Product Manager features
the proposed NoSQL collectional data model and a rich set
of other data types, including relational, files, and scalar
types. The Task Manager supports a single-component based
task model that separates registration from configuration and
eases the process of registering external functional
components (such as Web services) into primitive workflows
[13]. The Task Manager is also responsible for the run-time
execution of primitive workflows. The Cloud Resource
Manager (CRM) provides the provisioning and
deprovisioning capabilities of cloud resources, including
both virtual machines and storage resources. The Provenance
Manager manages the data lineage and derivation history of
data products for the reproducibility and validation of
workflow execution results [18]. The Workflow Monitor
supports the monitoring of workflow execution status and
progress and exception handling [19]. Finally, the Workflow
Engine is at the heart of the DATAVIEW system,
responsible for overall workflow orchestration, scheduling,
and the coordination and collaboration of all subsystems.

This paper enriches the Workflow Engine with the notion
of “executors”, which abstracts the execution platform that a
workflow will be executed at runtime. Two categories of
workflow executors are supported: on-premises workflow
executor, which supports the execution of a workflow on a
single DATAVIEW server, and cloud workflow executor,
which supports the execution of a workflow in the cloud
(e.g., Amazon EC2). Moreover, two types of cloud workflow
executors have been implemented: type-A cloud workflow
executor supports a clustering algorithm that partitions a
workflow into a number of workflow clusters, with each
workflow cluster executed in one virtual machine; type-B
cloud workflow executor supports MapReduce-style
workflows, which automates data partitioning, virtual
machine provisioning and deprovisioning, and scalable
execution of workflows. Both type-A and type-B workflow
executors exploit the proposed NoSQL collectional model
for improved performance of workflow execution.

III. NOSQL COLLECTIONAL DATA MODEL
A big data workflow represents a multiple-step data

analysis pipeline by chaining several data analysis modules
together via data links that connect the output of one analysis
module to the input of another analysis module. A big data
focuses on large-scale data processing and analytics with a

“scale-out” architecture and a “moving-computation-to-data”
processing paradigm. Big data imposes challenges in the
workflow development at both the primitive and composite
workflow level. A primitive workflow is the workflow that
contains no sub-workflows in it. On the other hand, a
composite workflow has one or more sub-workflows inside
it. Our original collectional data model [1] is a counterpart of
relational data model that supports creation of hierarchically
organized data in a nested manner. In our new NoSQL
collectional data model, we extend our original collectional
data model to improve the performance of big data workflow
execution.

Big data workflow is executed in the Cloud. A cloud
consists of a set of virtual machines that are used to store the
partitioned input data, execute the workflow and store the
output data generated by the workflow. A big data workflow
is defined as follows:
Definition 1. A big data workflow w is a 8-tuple (IP, OP,
D, T, S, Consumer, Producer, DataType), where
• IP is the set of input ports for workflow w. Each

individual input port is denoted by 𝑖𝑝! , 𝐼𝑃 =
𝑖𝑝!, 𝑖𝑝!,… , 𝑖𝑝! . IP^ is the set of intermediate input

ports for workflow w and IP^ ⊆ IP.
• OP is the set of output ports for workflow w. Each

individual output port is denoted by 𝑜𝑝! , 𝑂𝑃 =
𝑜𝑝!, 𝑜𝑝!,… , 𝑜𝑝! .

• 𝐷 is the set of workflow datasets. Each individual
dataset is denoted by 𝑑! , 𝐷 = 𝑑!,𝑑!,𝑑!,… ,𝑑! . dj
can be either connected to ipm ∈ 𝐼𝑃 or opq ∈ 𝑂𝑃.

• 𝑇 is the set of workflow tasks. Each individual task is
denoted by 𝑡! , 𝑇 = 𝑡!, 𝑡!, 𝑡!,… , 𝑡! . Each task can
have one or more input and output ports. 𝑡! . 𝑖𝑝! shows
the mth input port of task 𝑡! . subsequently 𝑡! . 𝑜𝑝!shows
the qth output port of task ti.

• 𝑆:𝐷 → 𝑅! is the dataset size function. S 𝑑! , 𝑑! ∈ 𝐷
returns the size of the dataset 𝑑!. The size of a dataset

Fig. 1. Architecture of DATAVIEW.

is defined in some pre-determined unit such as
MegaBytes, GigaBytes, TeraBytes, etc. 𝑅! is the set
of positive real number.

• 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟:𝑇 → 2^𝑇 is the task-task function.
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟(𝑡!), 𝑡! ∈ 𝑇 returns the set of tasks that 𝑡!
is directly connected to and require the output of 𝑡! for
their inputs.

• 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟:𝑇 → 2^𝑇 is the task-task function.
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟(𝑡!), 𝑡! ∈ 𝑇 returns the set of tasks that are
connected to 𝑡! directly and 𝑡! require their output as
its inputs.

• DataType:D → {“Scalar”, “File”, “Relational”,
“Collectional”} is the data-type function.
DataType(dj) returns the type of data, dj □

Our NoSQL collectional data model supports registering
hierarchically organized and collection oriented datasets.
We formally define a NoSQL Collectional Data Model as
follows:
Definition 2. A NoSQL Collectional Data Model A
NCDM of level K can be formalized by ℂ = ([C1, C2, …,
CK], V, R, I, K), where:

• I and K are two positive integers and 1 ≤ I ≤ K.
• [C1, C2, …, CK] is a list called the primary key of

the collection; therefore functional dependency
(C1, C2, …, CK) → V holds.

• A prefix [C1, C2, …, CI] of [C1, C2, …, CK] is called
a partition key of G, all tuples that correspond to
the same value of [C1, C2, …, CI] will be mapped
to the same virtual machine in physical
organization.

• V is an attribute for the value, it can take the type of
a scalar value (INTEGER, STRING, FLOAT,
DOUBLE, RELATIONNAME) or a relational
name of schema specified by R. R is a relational
schema. □

 In Fig. 2 we show an example of OpenXC collectional data
set from the automotive domain. It consists of three key
attributes, drivers, vehicles and traces, and value is a
relational name with three attributes <Name, Timestamp,
Value>. In Fig. 3 we show the OpenXC collectional data set
that is partitioned and stored in three virtual machines, vm1-
vm3.
Definition 3. A Data Partitioner γ is used to partition a
collectional instance c of schema ℂ = ([C1, C2, …, CK], V, R,
I, K) into c1, c2, …, cM such that c1 ∪ c2 ∪ …∪ cM ≡ c,
where cm is the partition for virtual machine m. Let 𝛼: C1 ×
C2 × …× CI → [-263, 263-1] be a function that computes the
token for a given collectional tuple t of c using only the value
of the partition key (possibly composite). Let 𝛽: [-263, 263-1]
→ [1, M], then we have γ(t) = 𝛽(𝛼(𝜋(𝑡, 𝐼))) where 𝜋 𝑡, 𝐼 is
the projection of t over the first I attributes. □
 Our proposed Map construct extends our previous notion
of the Map workflow construct in [3] in two directions: 1)
our Map constructs abstracts a data partitioner γ implicitly
where the primary key of c is used as the partition key; 2)

our Map constructs supports fully the NoSQL collectional
data model, and thus fully exploits the data parallelism and
the dynamic resource provisioning capability of our cloud
resource manager.
Definition 4. The Map construct abstracts the partitioning
and distribution of a large collectional data product over a
set of M virtual machines for high-performance parallel
processing. Given a workflow w([i1, i2, …, in], o) with n
input ports and one output port, where i1 takes a collectional
data product as its input, we have Map(w)(c, i2,…, in)
= w(cm, 𝑖2,… , 𝑖n)!

!!! . That is, the output of Map(w) on
collectional data product c is equal to the union of the
application of w on each partition cm. In order to apply Map
on w, w must satisfy the following constraints: 1) i1 takes a
collectional data product of schema ℂ = ([C1, C2, …, CK],
V, R, I, K) as input; 2) w is a primitive workflow or a
composite workflow with no nesting Map/Reduce
constructs; 3) w(c, i2,…, in) = 𝑤(𝑡, 𝑖2,… , 𝑖n)!∊! . That is, the
output of w on input collection c is equal to the union of the
application of w on each tuple in c. □
 Our proposed Reduce construct extends our previous
notion of the Reduce workflow construct in [3] in two
directions: 1) automatic shuffling and redistribution of the
input collectional dataset into multiple virtual machines; 2)
executing the workflow that performs aggregation on the
input collectional dataset based on the user provided key
attribute in multiple virtual machines in parallel.
Definition 5. The Reduce construct abstracts the automatic
shuffling, redistribution, aggregation of a large collectional
data product based on a given key attribute CI over a set of
M virtual machines for high-performance parallel
processing. Given a workflow w([i1, i2, …, in], o) with n
input ports and one output port, where i1 takes a collectional
data product as its input, we have Reduce(w, CI)(c, i2,…, in)

Fig. 3. Example of OpenXC data partitioner

Fig. 2. OpenXC collectional data product.

= w(cm, 𝑖2,… , 𝑖n)!
!!! . That is, the output of Reduce(w, CI)

on collectional data product c is equal to the union of the
application of w on each group cm. In each group cm, for t1,
t2 ∊ 𝑐m we have π(t1, CI) = π(t2, CI). That is, all tuples in cm
have the same value for CI. . □
 Note that in the Map construct, a Map workflow run is
applied to each tuple in c, while in the Reduce construct, a
Reduce workflow run is applied to a group of tuples in c,
with each group shares the same value for the given
attribute CI. Therefore, the Reduce construct is to be applied
to a workflow that implements an aggregation function that
is applicable to each group of the given input collectional
data product as reshuffled according to the given key
attribute.
 A workflow executor takes a big data workflow,
provisions virtual machines in the cloud, partitions the input
collectional data product, executes the tasks of the workflow
on different virtual machines, and finally deprovisions the
assigned virtual machines and presents the output of the
workflow to the user. While type-A workflow executor is
used to execute a graph-based workflow, individual
Map/Reduce workflow tasks are executed by the type-B
workflow executor. We present the algorithms for type-A
and type-B workflow execution in the next section.

IV. ALGORITHMS FOR WORKFLOW EXECUTORS
In this section, we propose three new algorithms that are
implemented in our cloud workflow executor. We
automatically provision and deprovision virtual machines
based on both the size of input datasets connected to the
workflow and the structure of the workflow.
 We provide two types of parallelism. First, we provide a
workflow level parallelism, type-A, by leveraging the
structure of the workflow, we cluster the given workflow
into multiple workflow clusters. Each workflow cluster
consists of a set of tasks that are executed in the same
virtual machine. Different workflow clusters are executed in
different virtual machines in parallel.

Second, we provide a task level parallelism, type-B, by
leveraging our newly proposed NoSQL collectional data
model. We automatically partition the input datasets into
multiple virtual machines and the task is mapped to those
machines and executed in parallel. We demonstrate
Algorithm 1, 2 and 3 by using the example shown in Fig. 4.

A. Task Clustering
 The goal of the Task Clustering Algorithm (T-Cluster) is
to generate an initial workflow schedule that is based on the
structure of the workflow. The cluster map consists of a list
of pairs <ti, VMID>, such that ti is the name of the task and
VMID is the identifier of a virtual machine. Each task in a
workflow consists of a set of producers and a set of
consumers that are connected to it, except for the entry and
exit tasks. The entry tasks in the workflow do not contain
any producer and instead a set of input datasets are
connected to it. In the same manner, the exit tasks do not

contain any consumer and instead a set of output stubs are
connected to it, in order to visualize the final results of the
workflow.

 In Fig. 4, we show an example big data workflow w
from the automotive domain that is used to query the
OpenXC dataset and compute the speeding and braking
behavior of the driver. In Algorithm1, in line 4, we get all the
tasks in w in some topological order and assign it to list ts.
We validate the correctness of our algorithm for different
topological order of ts. Let ts = <T1, T2, T3, T4, T5, T6, T7, T8,
T9, T10, T11, T12, T13, T14, Tend>. In line 5, we iterate through
each task ti in ts and add ti to the cluster map d. All the entry
tasks in w are added to list en = <T1, T2, T3>. Between lines 8
and 32, we iterate through each task ti in ts and add the
consumer of ti to list cs. For example consumers of T1 are
<T4, T7>. If task ti is an element of list en, then we assign
VMID to task ti and increment VMID.

 For example, <T1,1> is added to the map since the
default value of VMID = 1. If task ti is not an element of list
en, then we iterate through each consumer c in cs. For the
first consumer, we assign the same VMID as that of the task
and for the other consumers, we assign a different VMID.
For example, for the consumers of T1, the following pairs are
added, <T4,1>, <T7,2>. VMID is incremented every time a
new pair is added to the map. The final map d = <(T1, 1),
(T2,3), (T3,5), (T4,2), (T5,4), (T6,5), (T7,1), (T8,2), (T9,3),
(T10,4), (T11,1), (T12,2), (T13,3), (T14,4), (Tend,1)> is returned
as an output for workflow w. The output map d of w consists
of five clusters assigned to five virtual machines.

B. Type-A Cloud Workflow Executor
The goal of the type-A workflow executor is to reduce

the workflow makespan for a given workflow by running
each cluster of the workflow in parallel in multiple virtual
machines in the cloud. In Algorithm 2, in line 4, we get the
cluster map d from Algorithm1(T-Cluster) for the workflow
w. In line 5, we get all the tasks in workflow w in some
topological order and store it in list ts. Between lines 6 and
24, we iterate through all task ti in ts in parallel. We use

Fig. 4. An example big data workflow developed in
DATAVIEW.

Fig. 4. An example big data workflow

inputready to determine whether all the datasets are available
in order to execute a task. In line 7, we set inputready[ti] to
the total number of non-intermediate input ports of ti. In Fig.
4, for example inputready[T1] = 1, inputready[T4] = 0.
At each iteration, every task except the entry tasks will wait
until all the input datasets for the task becomes ready. For
example, Tend will continue to wait until the tasks {T11, T12,
T13, T14, T6} are executed and the data movement from {T11,
T12, T13, T14, T6} to Tend is completed. Between lines 13 and
23, we iterate through each consumer ci of task ti in parallel.
If the consumer ci and task ti are assigned to different virtual
machines, then we move the data from d[ti] to d[ci]. We
increment inputready[ci] through a locking mechanism so
that at a particular time only one consumer of one task can
increment it. For each consumer ci, the number of input
ports is calculated. If inputready[ci] is equal to the total
number of input ports of ci, then we send a signal to the
consumer ci as a wake up call. At that point inputready[ci] is
validated to check whether all the datasets needed to execute
ci is ready. If the datasets are ready, then ci is executed and

the consumers of ci are processed. For example only after
execution of the tasks {T11, T12, T13, T14, T6}, the signal to
wake up Tend is sent from T14.

C. Type-B Cloud Workflow Executor
The goal of the type-B workflow executor is to reduce the
task makespan for any task that has the Map or the Reduce
construct applied on it. A construct is a high order function
that is used to transform any given function into another
sophisticated function. In our case, a construct is applied on
a task to transform the task into a Map or a Reduce task.
The Map construct is applied to a task that performs
extracting, filtering and transformation. The Reduce
construct is applied to a task that performs aggregation,
summarization, filtering and transformation. Besides, the
Map and Reduce constructs also differ in the way the input
dataset is partitioned. Our data partitioner, which is inspired
from Cassandra uses our custom hash function, to distribute
any given NoSQL collectional dataset into multiple virtual
machines. Our cloud infrastructure manages a ring with a
range for each virtual machine. We assign multiple tokens
for each range. The advantage foreseen in our approach is
that we support the dynamic addition and deletion of virtual
machines and still manage to keep our key to token mapping
information intact. We plan to discuss our partitioner as a
separate research article.

Algorithm2:	 Type-‐A	 workflow	 executor	
1:	 	 function Type-A
2: input: workflow specification w
3: output: exit code
4: d ← T-Cluster(w)
5: ts ← all tasks in w sorted in a topological order
6: forall task ti ∈ ts in parallel
7: inputready[ti] = |ti.IP|- |ti.IP^|
8: while (inputready[ti] < | ti.IP|)
9: wait(sig[ti]);
10: end while
11: execute ti on d[ti]
12: cs ← all consumers of ti
13: forall consumer ci ∈ cs in parallel
14: if (d[ti] ≠ d[ci])
15: Move OutputOf (ti, ci) from d[ti] to d[ci]
16: end if
17: lock → acquire()
18: inputready[ci] = inputready[ci] + 1
19: lock → release()
20: if (inputready[ci] = |ci.IP|)
21: signal(sig[ci]);
22: end if
23: end in parallel
24: end in parallel
25: return SUCCESS
26: end function

Algorithm1:	 Task	 Clustering	 	
1:	 	 function T-Cluster
2: input: workflow specification w
3: output: d, a map storing task-VM assignments.
4: ts ← all tasks in w sorted in a topological order
5: for each t ∈ ts do d[t] ← 0 end for
6: en ← all entry tasks of w
7: VMID = 1, fc = false
8: for each t ∈ ts
9: cs ← all consumers of t
10: if (t ∈ en)
11: d[t] ← VMID
12: for each c ∈ cs
13: if (d[c] = 0)
14: d[c] ← VMID
15: VMID ← VMID + 1
16: end if
17: end for
18: else
19: fc = true
20: for each c ∈ cs
21: if (d[c] = 0)
22: if (fc = true)
23: d[c] ← d[t]
24: fc = false
25: else
26: d[c] ← VMID
27: VMID = VMID + 1
28: end if
29: end if
30: end for
31: end if
32: end for
33: return d
34: end function

 We apply the Map construct on the tasks {T1, T2, T3} and
the Reduce construct on tasks {T4, T5, T6} on the big data
workflow w shown in Fig. 4. In Algorithm 3, in line 4, we
initialize out, z, n and vms. In line 5, we get all the input
datasets connected to task ti and store them in in. Between
lines 6 and 20, we iterate through all the datasets d in in. In
line 7, we validate whether the type of the dataset d is
collectional. On validation success, we compute the total
number of virtual machines dynamically based on the size
of the dataset and the user configured value for partition size
(ps) and total number of task runs per virtual machine
(RunsPerVM). In line 10, we provision the virtual machines.
In line 11, we validate the type of construct applied to task
ti. If the type of the construct is a Map, then we partition the
data with all the key attributes in dataset d. If the type of the
construct is Reduce, then we partition the data by a user
provided key attribute rk. For all other datasets connected to
task ti that are not of type collectional, we move the original
dataset to all the virtual machines. Between lines 21 and 24,
we run task runs of ti in parallel in all the virtual machines
vms. The results from all task runs are combined together
and returned as the final output out.

V. CASE STUDY AND EXPERIMENTS
In our DATAVIEW system, we implemented a big data

workflow called the Autoanalytics workflow to show the
strength of our proposed NoSQL collectional data model
and the scalability features. The Autoanalytics workflow is
used to analyze the data collected from vehicles and provide
insights on the risk level based on the drivers driving
behavior. OpenXC is an open source platform that is used as
a source to generate a wealth of data from the vehicle
through a hardware device that is installed in the car. As the
average adult driver in the US may generate up to 75 Gb of
such driving data annually, the total amount of data
generated in the US may exceed 14 Eb (1018 bytes) per year
[12, 16]. We collected data from X drivers for one hour with
X= 5, 10, 15, 20, 25 resulting datasets of size in the range of
1GB-5GB. Because of the dynamic nature of the growth of
size of the dataset and the 5V big data challenges incurred in
the domain, we consider our Autoanalytics workflow as a
big data workflow.

In Fig. 5, we show the Autoanalytics big data workflow.
The first step is ExtractDriverDetails that accepts the
collectional OpenXC dataset as input and filter by their
VehicleId. The second step is ComputeSpeedDistribution
that is used to find the topK vehicle speed and the distance
driven without pressing the brake. The third step is
AddressFinder that is used to find the geographic location
of the vehicle during the time at which the signal was
captured. We use Google Places API to determine the
address from the latitude and longitude signal values. The
fourth step is ComputeRoadType that is used to find the type
of the road (highway or local) for each geographic location
computed in the third step. The fifth step is
SpeedLimitFinder that is used to find the speed limit posted
on those geographic locations based on the road type. The
sixth step is ValidateVehicleSpeed that is used to compare
the vehicle speed generated in step-2 with the actual speed
limit in the closest latitude longitude. The output of the task
indicates if the driver was below or over the speed limit.
The 7th step is ComputeSimilarityScore that is used to
compare several drivers with different traces to identify the
similarity between them. The final output of the
ComputeSimilarityScore generates a report to show the list
of good drivers and bad drivers along with their driving
score.

We apply the type-B Map construct on step-1, step-2 and
executed them in the range of 1-25 virtual machines
simultaneously. We apply the type-B Reduce construct on
step-7 by (key=DriverName) to partition/group all the signal
values associated with each driver into the same machine.
We apply the type-A cloud workflow executor for 25
drivers and executed the workflow in the range of 1-25
virtual machines in the EC2 cloud. We performed our
experiments in the OpenXC dataset with the range of 1-5GB
on 1 to 25 machines. Our experimental results show that
our type-A executor performed well by reducing the
workflow makespan. And we applied the Map and the

Algorithm3:	 Type-‐B	 workflow	 executor	
1:	 	 function type-B
2: input: task name ti, type of construct toc,
 partition size ps, number of task runs per
 virtual machine RunsPerVM, partition key
 for reduce rk
3: output: final output of task t
4: out ← [], vms ← [], z = 0, n = 0
5: in ← ti.inputdatasets;
6: for each dataset d ∈ in
7: if (Type (d) = collectional)
8: z = size of d
9: n = z / ps / RunsPerVM
10: vms ← CRM.provision(n)
11: if (toc = map)
12: ParKeys ← get all keys of d
13: else if (toc = reduce)
14: ParKeys ← rk
15: end if
16: Partition(d, ParKeys) to vms
17: else
18: Move(d) to vms
19: end if
20: end for
21: forall vm ∈ 𝑣𝑚𝑠 in parallel
22: result ← Execute task ti in vm
23: out ← out ∪ result
24: end in parallel
25: return out
26: end function

Reduce construct on the individual tasks in the workflow.
Our type-B executor performed well by reducing the
individual task makespan and as a whole also reducing the
workflow makespan even more. In Fig.6, we show the
experimental results that were performed using the OpenXC
dataset in the Amazon EC2 cloud environment.

VI. RELATED WORK
 Existing workflow management systems such as Kepler

[4], VisTrails [6] and Taverna [5] do not support a scalable
data model that is suitable for processing big data in the

cloud. Kepler proposes a collection-oriented model in which
the data is nested in different levels as collections and sub
collections with arbitrary data type. The data model is
represented using XML and is semi structured in nature,
whereas our collectional data model is well structured and is
much simple to process big data workflows. VisTrails
provide a good visualization framework and support a semi-
structured representation of the data, it strongly lacks in
storing hierarchical information such as collections and the
workflow engine does not support scalable workflow
execution in the cloud. Taverna supports singleton values
such as strings, byte arrays and list of singletons. Lists are
defined to a specific level and are not capable to handle
nested data to arbitrary levels. Fei et al. [1, 3] propose a
collectional data model to process scientific workflows in
one machine and a set of well-defined operators and
constructs. The proposed model and the operators are not
scalable and do not consider challenges of data partitioning
and workflow execution in the cloud. Wang et al. [2]
propose an approach to improve the programmability and
scaling flexibility of big data application through different
parallelization techniques. They propose a list of DDP
patterns that are used to process key value pairs and
parallelize the execution of the user-defined functions.

Fig.5. An automative OpenXC big data workflow

Fig. 6. Workflow makespans by varying the number of virtual machines and datasets.

Although their approach is similar to the workflow
constructs proposed by us, our Map and Reduce workflow
constructs can be applied to any given workflow by
leveraging our proposed NoSQL collectional data model.

Existing big data NoSQL databases are classified into the
following four category of databases: 1) key-value databases
[7], such as Memcached and Redis, 2) document-oriented
databases [8], such as RavenDB, MongoDB and CouchDB,
3) column-family databases [9, 11], such as Apache
Cassandra and HBase, 4) graph databases [10], for example:
Neo4J, FlockDB and GraphDB. The existing NoSQL
databases are not suitable for big data workflows because
they do not support ad hoc sophisticated analysis and is not
extendible to workflow optimization.

None of the above techniques provides a scalable data
model for data centric big data workflows. In this paper, we
propose a NoSQL collectional data model that is both
scalable and at the same time is well structured for
performing ad hoc analysis on large datasets. Moreover, we
also propose two new cloud workflow executors that take
advantage of the proposed NoSQL data model to improve
the performance of workflow execution.

VII. CONCLUSIONS AND FUTURE WORK
 In this paper, we propose a NoSQL data model that: 1)
supports high-performance MapReduce-style workflows
that automate data partitioning and data-parallelism
execution. In contrast to the traditional MapReduce
framework, our MapReduce-style workflows are fully
composable with other workflows enabling dataflow
applications with a richer structure; 2) automates virtual
machine provisioning and deprovisioning on demand
according to the sizes of input datasets; 3) enables a flexible
framework for workflow executors that take advantage of
the proposed NoSQL data model to improve the
performance of workflow execution. We presented a case
study and experiments that show the competitive advantages
of our proposed NoSQL collectional data model and the
cloud workflow executors. Ongoing work includes
implementing a new set of workflow constructs that can be
used for efficient parallel processing.

ACKNOWLEDGMENT
This work is supported by U.S. National Science
Foundation under ACI-1443069 and is based upon work
supported in part by the National Science Foundation under
Grant No. 0910812.

REFERENCES
[1] X. Fei, et al., "A Collectional Data Model for Scientific Workflow

Composition", in Proc. of the 2010 IEEE International Conference on
Web Services (ICWS'10), pp. 567-574.

[2] J. Wang, et al., "Big data applications using workflows for data
parallel computing", Computing in Science & Engineering, vol.16,
no. 4, pp. 11-21, 2014.

[3] X. Fei, et al., "A MapReduce-Enabled Scientific Workflow
Composition Framework", in Proc. of the 2009 IEEE International
Conference on Web Services (ICWS'09), pp. 663-670.

[4] T. McPhillips, et al., "Collection-oriented scientific workflows for
integrating and analyzing biological data", in Proc. of DILS, vol.
4075, 2006, pp. 248–263.

[5] D. Turi, et al., "Taverna workflows: Syntax and semantics", in Proc.
of eScience, 2007, pp. 441–448.

[6] S. Callahan, et al., "VisTrails: visualization meets data management",
in Proc. of SIGMOD, 2006, pp. 745–747.

[7] R. Nishtala, et al., "Scaling Memcache at Facebook", in Proc. of 10th
USENIX conference on Networked Systems Design and
Implementation (nsdi'13), pp. 385-398.

[8] F. Chang, et al., "Bigtable: A distributed storage system for structured
data", in Proc. of ACM Transactions on Computer Systems
(TOCS'08), vol. 26, no. 2 (2008), 4.

[9] M.N. Vora, et al., "Hadoop-HBase for large-scale data", in proc of
2011 International Conference on Computer Science and Network
Technology (ICCSNT'2011), pp. 601-605.

[10] R. Angels, et al., "Survey of graph database models", in proc of ACM
Computing Surveys (CSUR'08), vol. 40, no. 1 (2008), 1.

[11] J. Dean, et al., "MapReduce: Simplified data processing on large
clusters", in Proc. of OSDI, 2004, pp. 137-150.

[12] A. Kashlev, et al., "A System Architecture for Running Big Data
Workflows in the Cloud", in Proc. of the 2014 IEEE International
Conference on Services Computing (SCC'14), pp. 51-58.

[13] A. Mohan, et al., "Addressing the Shimming Problem in Big Data
Scientific Workflows", in Proc. of the 2014 IEEE International
Conference on Services Computing (SCC'14), pp. 347-354.

[14] C. Olston, et al., "Pig Latin: a not-so-foreign language for data
processing", in Proc. of SIGMOD, 2008, pp. 1099-1110.

[15] Y. Yu, et al., "DryadLINQ: A system for generalpurpose distributed
data-parallel computing using a high-level language", in Proc. of
OSDI, 2008, pp. 1-14.

[16] D. Williams, “The Arbitron national in-car study”, Arbitron Inc.,
2009.

[17] C. Lin, et al., "A Reference Architecture for Scientific Workflow
Management Systems and the VIEW SOA Solution", IEEE
Transactions on Services Computing, vol.2, no. 1, pp. 77-92, 2009.

[18] Chunhyeok Lim, et al., “OPQL: Querying Scientific Workflow
Provenance at the Graph Level”, Data & Knowledge Engineering
(DKE), 88(2013), pp.37-59, 2014.

[19] D. Ruan, et al., “A User-Defined Exception Handling Framework in
the VIEW Scientific Workflow Management System”, in Proc. of the
IEEE International Conference on Services Computing (SCC),
pp.274-281, Honolulu, Hawaii, 2012.

[20] G. Bell, et al., "Beyond the data deluge", Science 323.5919 (2009),
pp.1297-1298.

[21] H. Chen, et al., "Business Intelligence and Analytics: From Big Data
to Big Impact," MIS quarterly 36.4 (2012), pp.1165-1188.

[22] J. Han, et al., "Survey on NoSQL database", Pervasive computing and
applications (ICPCA), 2011 6th international conference on. IEEE,
2011, pp. 363-366.

[23] J. Pokorny, "NoSQL databases: a step to database scalability in web
environment", International Journal of Web Information Systems 9.1
(2013), pp.69-82.

[24] A. Chebotko, et al., "A Big Data Modeling Methodology for Apache
Cassandra." Big Data (BigData Congress), 2015 IEEE International
Congress on. IEEE, 2015, pp. 238-245

[25] M. Ebrahimi, et al., "TPS: A task placement strategy for big data
workflows." Big Data (Big Data), 2015 IEEE International
Conference on. IEEE, 2015, pp. 523-530.

[26] M. Ebrahimi, et al., "BDAP: A Big Data Placement Strategy for
Cloud-Based Scientific Workflows." Big Data Computing Service
and Applications (BigDataService), 2015 IEEE First International
Conference on. IEEE, 2015, pp. 105-114.

