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Abstract—Substantial amount of research has been done 
recently to address the shimming problem in scientific 
workflows, in which a special kind of adaptors, called shims, 
are inserted between workflow tasks to resolve the data type 
incompatibility issue. Recently, scientific workflows are 
increasingly used for big data analysis and processing, which 
poses additional challenges, such as volume, velocity and 
variety of data to the shimming problem. One issue is to scale 
the registration and configuration procedure to a large number 
of workflow tasks. Another issue is the ease of integrating a 
large number of remote Web services and other heterogeneous 
task components that can consume and produce data in 
various formats and models into a uniform and interoperable 
workflow. Existing approaches fall short in usability and 
scalability in addressing these issues. In this paper we 1) 
propose a new simplified single-component based task model 
based on extensive experiences and lessons learned from our 
original multiple-component based task model. The new model 
separates registration from configuration and eases the process 
of registering external functional components (such as Web 
services) into p-workflows; 2) propose a shim generation 
algorithm that elegantly solves the shimming problem raised 
by Web service based scientific workflows; and 3) we integrate 
MongoDB , a NoSQL document-oriented database system for 
storing and managing large-scale unstructured documents. A 
new version of the DATAVIEW system has been developed to 
support the proposed techniques and a case study has been 
conducted to show the feasibility and usability of our proposed 
techniques. 
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I.  INTRODUCTION 
In recent years, the term “big data” has become a 

buzzword in both industry and academia. It is frequently 
used to refer to the method of processing and analyzing large 
amounts of heterogeneous types of data to mine hidden 
patterns, correlations, trends, and other useful information to 
guide enterprise decisions and strategies for cutting cost or 
increasing revenues [14, 15]. Scientific workflows, which 
were originally developed for automating the data analysis 
process of scientific data (often large in volume and vary in 
types) to enable and accelerate scientific discovery, are now 
increasingly used for the processing and analysis of business 
data as well. However, the challenges of big data, including 
volume, velocity, and variety pose additional challenges to 
scientific workflow research. 

The shimming problem has received much attention in 
the scientific workflow community [6, 11, 12, 13], in which 
special kinds of adaptors, called shims, are inserted between 

workflow tasks to resolve the data type incompatibility issue. 
However, to meet the challenges of big data, several issues in 
the existing approaches need to be examined. The first issue 
is to scale the registration and configuration procedure to a 
large number of workflow tasks, which is critical for big data 
workflows. The second issue is to ease the integration of a 
large number of remote Web services and other 
heterogeneous task components, such as command line 
executables, that can consume and produce data in various 
formats and data models into a uniform and interoperable 
workflow. In particular, we examine automatic shim 
generation techniques for third-party Web services, whose 
development were not workflow-aware.  

   The contributions of the paper are: 1) based on 
extensive experiences and lessons from our previously 
proposed multiple-component based task model [12], we 
propose a new simplified single-component based task 
model. The new model separates registration from 
configuration and eases the process of registering external 
functional components (such as Web services) into p-
workflows; 2) we propose a shim generation algorithm, 
called GenShims, that elegantly solves the shimming 
problem raised by Web service based scientific workflows; 
3) we integrate MongoDB , a NoSQL document-oriented 
database system for storing and managing large-scale 
unstructured documents. A new version of the DATAVIEW 
system has been developed to support the proposed 
approaches. 

II. PRIMITIVE WORKFLOW MODEL 
Primitive workflows (a.k.a. tasks or p-workflows) are the 

basic building blocks of a scientific workflow. Composite 
workflows were used to represent workflows that consist of 
multiple workflows. Our previously proposed task model 
[12], contains multiple components inside a single task and 
hence complicates the registration process as complex 
shimming needs to be done between the components at 
design time in order to register any task as a p-workflow. In 
our new model, we elegantly solve this problem by having 
only one component inside a task and ease the registration 
process. At design time, we also provide a configuration 
mechanism through which we get the input and output port 
information from the user, when necessary. 

One appealing feature of our new primitive workflow 
model is that it provides an abstraction technique, in which 
different heterogeneous task components can be abstracted 
into uniform p-workflows so that they can interoperate with 
one another. While a task manager needs to be aware of the 
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Figure 1 (a) our proposed primitive workflow model; and (b) a classification of p-workflows. 
 

implementation details of each p-workflow in order to know 
how to register it as a p-workflow; once registered, such 
implementation details are hidden from the workflow 
engineer, who can drag and drop any p-workflow into the 
design panel, regardless of how it is implemented and 
connect them with one another into a composite workflow. 

In our system, we provide a user friendly GUI for the 
design and modification of p-workflows. As shown in Figure 
1(b), using our model, we classify p-workflows into the 
following: 

1) System Defined operations. They are also called 
built-in p-workflows. These p-workflows come with 
a DATAVIEW installation. Examples of such p-
workflows include the logical operations (such as 
AND, OR, and NOT) and relational algebra 
operators (such as SELECTION, PROJECTION, 
and UNION). 

2) User Defined Operations. These are the p-workflows 
that are provided by task engineers through 
registration and configuration. The task engineer 
provides the task interface and its implementation 
detail during the registration process. Examples of 
such p-workflows include command line based 
applications and web service based applications. 

In order to simplify the workflow design process and to 
emphasize the usability of our system, we maintain a 
workflow repository through which our users can easily 
access existing workflows and use them to compose more 
complex workflows in the workflow design panel 
Furthermore, in our model, we separate workflows into two 
categories: reusable workflows and executable workflows. 
Reusable workflows are complex operations designed 
without connecting any input and output data products to the 
workflow, thereby they are mainly used by the workflow 
engineer to build reusable templates. On the other hand, 
executable workflows contain input and output data products 
connected to the input ports of workflows, and they are 
mainly used by data scientists to perform data analysis and 
processing. Workflow design is supported through our 
workflow specification language known as SWL that defines 
a scientific workflow according to the DATAVIEW 
Workflow Model [7], through which one can create scientific 
workflows with different layers of granularity in a nested 
manner. SWL, which is automatically created on the server 
side while designing any workflow, is formulated by 

translating the workflow diagram that is represented in our 
workflow visualization language (mxGraph). mxGraph is 
mainly used at the client side to render and visualize a 
workflow as a diagram. While a workflow is saved in our 
system, both the mxGraph and SWL specifications are 
serialized and stored into our database. As shown in Figure 
1(a), our proposed new primitive workflow model consists of 
the following three layers: 

1) Logical Layer: The Logical layer contains the p-
workflow interface that models the port details of the 
workflow such as input port ID, input port type, 
output port ID, and output port type. At run time, the 
data flow occurs through the data channel 
connecting the source workflow constituent to the 
destination workflow constituent. 

2) Mapping Layer: The Mapping layer contains a list 
of mapping information such as mapping of an input 
port of the p-workflow interface to an input of the p-
workflow component (IP2P) and mapping of an 
output of the p-workflow component to an output 
port of the p-workflow interface (O2OP). 

3) Physical Layer: The Physical layer contains only 
one p-workflow component at a time, that models 
the service and or application that is used to 
implement the task. Hence registration of p-
workflow is made simple. Heterogeneous 
characteristics of the p-workflow are captured and 
modeled in this layer including the inputs, outputs, 
location of workflow component (such as Web 
service WSDL file, command line executable file.) 

Using our primitive workflow model, task engineers can 
easily register a command line based application as a p-
workflow by uploading their executable into our 
DATAVIEW server and providing configuration details, 
such as input type, input mode, output type, and output 
mode. As shown in Tables 1(a) and 1(b), we formulated a 
mapping table based on different cases that a command line 
application can fall under in respect to the input and output 
types. We identified the following 6 input modes: 1) 
ByValue – the IP2I mapper pass the value from the input 
port as an input argument during component invocation; 2) 
ByFile – the IP2I mapper generate unique file name, create 
the file and write content from the input port into the file, 
pass file name as an argument during component invocation; 
3) ByFixedFile – the IP2I mapper create a file with the fixed 
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 Table 1(a) IP2I mapping table. 
 
  
 
 
 
 
 
 
 
 
Table 1(b) O2OP mapping table. 
 
 
 
 
 
 
 
 

                                                   
                                            Figure 2 Command line based p-workflow. 

file name and write content from the input port into the file, 
pass file name as an argument during component invocation; 
4) ByStdin – the IP2I mapper gets the value from the input 
port and pipe it to the input stream during component 
invocation; 5) ByEnv – the IP2I mapper will create 
environment variable with a user driven name and take the 
value from the input port and write into it during the 
component invocation; 6) ByConst – the IP2I mapper simply 
add a constant value as one of the argument during 
component invocation. On the other hand, we identified the 
following 3 output modes: 1) ByValue –the O2OP mapper 
simply takes the output that is returned during the component 
execution which could be either stdout or exit code and binds 
it to the output port; 2) ByEnv – the O2OP mapper will fetch 
the value from the environment variable using the name 
provided by user during registration and bind the value to the 
output port during component execution; 3) ByFile – the 
O2OP mapper will simply fetch the value from the file name 
which is provided through one of the arguments and bind the 
value to the output port during component execution.  

In order to demonstrate the strength of our model, we 
implemented and tested six cases in which a command line 
executable can be registered and configured into a p-
workflow in our DATAVIEW system. Due to space 
limitation, we have shown only one case: 

Case 1: suppose we created a command line java 
application addition1.class which takes two command line 
arguments, both of Integer type, and produces the sum of the 
two integers as the stdout. After converting addition1.class 
into a p-workflow pw_addition1, the IP2I mapper will take 
the two integers from input ports i1, i2 and then use them as 
two command line arguments (inputs) for pw_addition1, 
after the execution of pw_addition1, the O2OP mapper will 
route the output in the stdout to output port o1 for 
pw_addition1. Figure 2 shows a simple example of a 
scientific workflow of case1 implemented in our system. 

We identify the following advantages of our primitive 
workflow model: 
� Domain Proficiency: Since the developers of these 

third party applications are experts in the domain and 
the software components are well studied and 
implemented, using it within a scientific workflow is a 
big advantage and simplifies the workflow design 
process through the anatomy of reusability and sharing.  

� Reliability: These third party applications are highly 
reliable because they are used by many scientists all 
over the world and hence most of the problems/bugs in 
the software will be fixed promptly.  

� Infrastructure: Most of third party applications such 
as Web services are hosted in a remote server and 
hence high computation cost is not an issue as the 
infrastructure is available free through invoking the 
Web service.  

� Support: Many third party applications are free to 
download, install and also have a forum where people 
discuss various issues and fixes about these software 
components. 

III. SHIM GENERATION ALGORITHM FOR WEB SERVICE 
BASED SCIENTIFIC WORKFLOWS 

In this section, we first propose an approach to solve the 
shimming problem in our DATAVIEW system, that occurs 
during registration of any Web service based p-workflow 
through a user-driven configuration mechanism and then 
provide a shim generation algorithm to translate a p-
workflow into a composite workflow by wrapping two 
special adaptors known as pCombiner and pSplitter shims 
around the p-workflow. Next, we demonstrate an example of 
how our GenShims algorithm works. 

 
3.1 Addressing the shimming problem 
Because of the heterogeneous nature of scientific 

workflows, our system provides a platform to register  
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     Figure 3(a) Web service based p-workflow. 

 
primitive-workflows from different sources such as Web 
services, command line applications. However, this then 
becomes an issue because of the incompatibility of data 
types between the input/output port of a p-workflow and 
input/output of component connected to it. Due to the 
shimming problem that exists during the workflow 
composition, at run time the p-workflow is not interoperable 
with other types of workflow constituents. Through a user 
driven configuration mechanism, we separate the shimming 
problem from registration and thereby making p-workflow 
registration simple and usable. After registering the p-
workflow, the shimming problem is solved by configuring 
the input and output port of any arbitrary p-workflow and the 
system automatically creates instances of two special kinds 
of shims known as pCombiner and pSplitter. Finally a new 
wrapper workflow is created on the fly during the p-
workflow configuration with the instances of pCombiner and 
pSplitter inserted into the new wrapper workflow. In this 
way we hide the shim at the workflow level and abstract the 
existence of shim from the data scientist perspective, but 
during workflow execution, a shim automatically does the 
conversion based on the configuration details provided by 
the workflow designer. Data scientists would simply need to 
drag and drop the wrapper workflow, connect data products 
to it and execute the workflow to view the results. 

In our DATAVIEW system, a task engineer can easily 
register any arbitrary Web service operation by providing 
the system with the WSDL file of any arbitrary Web 
service. We implemented WSDL parser functionality within 
our system that can automatically get the input and output of 
an operation from the WSDL and convert it into the input 
and output port of the workflow. Additionally we generated 
automatically two special shims: pCombiner and pSplitter. 
pCombiner shim, is a special kind of shim adaptor that takes 
in any number of arbitrary data from the input ports of 
arbitrary types and create a new data product of type XML 
and bind the XML data to the output port. The pSplitter 
shim, is another special kind of shim adaptor that  

 

Figure 3(b) Workflow Specification (SWL) with       
 shim inclusion. 

takes in data from the input port of type XML and extract 
the elements inside it in a unique manner and split the result 
into multiple outputs, which are then bound to multiple 
output ports. Input port details of the pCombiner such as (no 
of input ports, input port types) and output port details of the 
pSplitter such as (no of output ports, output port types) are 
identified during the p-workflow configuration. As shown in 
Figure 4, the proposed GenShims algorithm takes an input 
p-workflow ws1 and converts it into a composite workflow 
c-ws1.  

<workflowSpec> 
<workflow name="ws_pWorkflowOp1" root="true"> 
<workflowInterface> 
 <inputPorts> 
<inputPort> 
<portID>i0</portID> 
<portName>i0</portName> 
<portType>Integer</portType> 
</inputPort> 
<inputPort> 
<portID>i1</portID> 
<portName>i1</portName> 
<portType>Integer</portType> 
</inputPort> 
</inputPorts> 
 <outputPorts> 
<outputPort> 
<portID>o0</portID> 
<portName>o0</portName> 
<portType>Integer</portType> 
</outputPort> 
<outputPort> 
<portID>o1</portID> 
<portName>o1</portName> 
<portType>Integer</portType> 
</outputPort> 
</outputPorts> 
</workflowInterface> 
<workflowBody mode="graph-based"> 
<workflowGraph> 
<workflowInstances> 
<workflowInstance id="pWorkflowOp1"> 
<workflow>pWorkflowOp1</workflow> 
</workflowInstance> 
<workflowInstance id="pCombiner19"> 
<workflow>pCombiner19</workflow> 
</workflowInstance> 
<workflowInstance id="pSplitter19"> 
<workflow>pSplitter19</workflow> 
</workflowInstance> 
</workflowInstances> 
<dataChannels> 
<dataChannel from="pWorkflowOp1.o1" to="pSplitter19.i1"/> 
<dataChannel from="pCombiner19.o1" to="pWorkflowOp1.i1"/> 
</dataChannels> 
</workflowGraph> 
<G2W> 
<inputMapping from="this.i0" to="pCombiner19.i1"/> 
<inputMapping from="this.i1" to="pCombiner19.i2"/> 
<outputMapping from="pSplitter19.o1" to="this.o0"/> 
<outputMapping from="pSplitter19.o2" to="this.o1"/> 
</G2W> 
</workflowBody> 
</workflow> 
</workflowSpec> 
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In order to create the composite workflow c-ws1, our 
algorithm creates both workflow specification (SWL) and 
visualization (mxGraph) for the workflow automatically. 
Our pCombiner is IP2I mapper for Web service based p-
workflow and each time GenShims algorithm is executed, it 
creates a new instance of pCombiner. On the other hand, the 
pSplitter shim is an O2OP mapper for Web service based p-
workflow and each time the GenShims algorithm is 
executed, it creates a new instance of pSplitter.  Figure 3(b), 
shows the SWL of ws_pWorkflowOp1 that contains the  
pCombiner, pSplitter and pWorkflowOp1 (p-workflow) 
respectively in our DATAVIEW system. Our approach 
currently works for Web services with primitive types of int 
and string for the following cases of web service operation: 
one input and one output, one input and multiple outputs, 
multiple inputs and one output, multiple inputs and multiple  
outputs, no input and one output, no input and multiple 
outputs, no input and no output, one input and no output, 
multiple inputs and no output. In the future, we will explore 
the above cases with complex data types as inputs and 
outputs.  

 
3.2 Example of Shim Generation. 
Figure 3(a) shows an example of shim generation for 

Web service based workflows. To simply the explanation, 
we developed a Web service ws_addsubtract in Java, which 
takes a pair of integers a and b, and returns their sum and 
difference, respectively as two integers c and d. After 
registering the WSDL URL of this Web service. 
(http://dmsg2.cs.wayne.edu/axis2/services/pWorkflow1?ws
dl) in DATAVIEW, the system automatically extracts all the 
operations of the Web service. In our case, the user selects 
the only operation available, pWorkflowOp1, and the system 
automatically convert it into p-workflow pWorkflowOp1. 
This workflow has one input port of XML type and one 
output port of XML type. The user can then click the 
configure link in this workflow, which allows the user to 
choose the number of input ports (which is 2) and the 
number of output ports (which is also 2). After the 
completion of the configuration, two shims, pCombiner19 
and pSplitter19, are generated  automatically, and a new 
complex workflow cw_pWorkflowOp1 is constructed. 
Workflow cw_pWorkflowOp1 contains two input ports a 
and b, and two output ports c and d. Figure 2 shows one 
case of execution with inputs a=4 and b=3, displaying all 
the intermediate values of each step.  

IV. INTEGRATION OF NOSQL DATABASE 
NoSQL databases are distributed and schemaless 

databases that have recently emerged as a technology 
developed to address the need to store and process huge 
volumes of data.  Existing NoSQL databases such as Riak, 
MongoDB , Cassandra, HBase, Neo4j enable horizontal  
scalability across a large number of commodity servers. In 
DATAVIEW, we integrated MongoDB  within our  
 

       Figure 4 GenShims Algorithm. 
data product manager to store and manage different data 
products. MongoDB  is a scalable, open source document-
oriented database that is commonly classified as a NoSQL 
database. MongoDB  uses JSON-like documents with no 
schema to store data inside different collections. In 
DATAVIEW, execution of a scientific workflow consumes 
and produces huge amount of distributed data objects. These 
data objects are  heterogeneous of various data types. A 
scientific workflow might use mixed data types as the data 
could be any form and aligns well with the schemaless and 
scalable nature of MongoDB . In DATAVIEW, we provide 
an abstraction of data objects stored in MongoDB  as a data 
product. 

Three challenges of Big Data namely the volume, 
velocity and variety is a key issue focused today in both 
academia and industry. Data can be from different sources 
and the system should have the capability to some how  

Algorithm: GenShims 
Input: Primitive Workflow ws1 
Output: Composite Workflow c_ws1  
Begin 
1. If ws1 is of type web service 
2. Then extract configuration details such as input port 

name{In), input port type(It), output port name(On), 
output port type(Ot) by parsing the wsdl file of the 
primitive workflow ws1. 

3. Auto populate port details in the configuration section 
of the primitive workflow ws1, with an option for the 
users to modify or add new port information.  

4. Create a new instance of the combiner shim (C) , 
which takes in arbitrary number of input ports of 
name In and type It and combine them into an output 
Oc of type XML.  

5. Create a new instance of the splitter shim (S) , which 
takes in XML input Is and parse the XML to extract 
all the values inside it and split them into a series of 
outputs of name On and type Ot.   

6. Create SWL for composite workflow c-ws1 with the 
workflow interface that has input ports In with port 
type It and output ports On with port type Ot. 

7. Append the workflow instances section to SWL that 
was created in step 6 with the instances pCombiner, 
ws1,and pSplitter. 

8. Append the dataChannel section to SWL with the 
following source -> destination data flow construct. 

a) Output from the combiner shim (Oc) to the 
input of the primitive workflow ws1.  

b) Output of the primitive workflow ws1 to the 
input of the splitter shim (Is). 

9. Create the mxGraph diagram for the composite 
workflow c_ws1 with the input port In  of type It 
connected to pCombiner input port. Output of 
pCombiner connected to the input of ws1. Output of 
ws1 connected to the input of pSplitter. Output of 
pSplitter connected to the output port On of type Ot 

10. Else  
11. No shim required to be inserted. 

End Algorithm 
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register and import the data and perform analysis and     Table 2 Data Types supported in DATAVIEW. 
process the data. One of the main advantages of integrating 
MongoDB  in our system is that, it is horizontabally 
scalable across the commodity servers and hence the data 
from the scientists can be shipped through our data product 
manager with high performance. Another advantage is 
MongoDB  offers MapReduce support at the database level 
to process huge amounts of data into meaningful aggregated 
results. MongoDB  applies the map phase to each document 
inside the collection that matches the query condition and 
emits a (key, value) pairs. And then the reduce phase is run 
for those keys that contain multiple values and data is 
collected and aggregated to form a new collection in the 
database. Our solution to address the challenge occurred by 
such a large variety of types in big data is to use a custom 
approach to classify different data types and then perform 
shimming to transform data into one of the DATAVIEW 
data types. As shown in Table 2, we defined the notion of 
DATAVIEW data type in our system and broadly classify 
data products into the following categories: 1) scalar 2) 
relational 3) collectional 4) XML and 5) file. 

V. CASE STUDY 
In our DATAVIEW system, we created several 

automotive consumer review big data primitive workflows 
in order to collect, merge, extract, and analyze the raw data 
from automotive review websites, including KBB, Edmunds, 
and MSN Autos. As part of our case study, we deployed a 
MongoDB sharded cluster in FutureGrid that provides a 
schemaless, horizontabally scalable, and MapReduce 
enabled data storage and processing in a cluster 
enivronment. In order to deploy the MongoDB cluster, we 
created one VM instance with 4 GB memory and 40 GB  
disk space. In addition, we created 3 VM instances with 
each 2 GB memory and 40 GB disk space and setup the 
config servers which contains the metadata information such 
as shard and block level information. In MongoDB, the 
config servers are  single point of failure and hence we 
created 3 instances for replication purpose on node failure. 
Finally we created 3 more VM instances with each 4 GB 
memory and 60 GB disk space and setup the mongod shards 
that contains the actual data sharded (split inside chunk and 
new chunks). In addition to deploying the sharded cluster, 
we also integrated the MongoDB Java driver within our 
DATAVIEW system, in order to make a connection with 
the MongoDB cluster and perform several operations on the 
data.  

As shown in Fgiure 5(a), we created an automotive 
consumer review analysis workflow. Firstly, we created a 
non map reduce p-workflow known as SearchNonMR that 
takes in three inputs (AutoReview, FieldName1, 
SearchTerm1) and query the FieldName on the master node 
of the MogoDB cluster with an or condition to find the 
match for the list of search terms provided by the user such 
as “MPG, Fuel Economy, Excessive comsumption”.   
During our experiments we found that the execution of the 

workflow is time consuming and takes around 629 seconds 
for inserting 8425 (11.25 MB) records into a new collection 
in the MongoDB cluster. Secondly, we created  two map 
reduce p-workflows known as SearchLevel1MR and 
SearchLevel2MR to process the consumer review dataset in 
a map reduce manner and break down the data into State 
and City level. SearchLevel1MR takes in 3 inputs 
(AutoReview, FieldName2, SearchTerm2) and execute the 
map reduce program written with a mapper that emits 
(Search Term, Review) based on a REGEX match condition 
and a reducer that aggregates all the review for distinct 
search terms. Output of the map reduce function is 
automatically binded to a new collection inside the 
MongoDB cluster. Output from the SearchLevel1MR is 
passed as input to SearchLevel2MR which would execute a 
map reduce program with a mapper that loops through each 
item in the aggregated review and for each review item it 
emits for example (State Name, Review) based on a 
REGEX match condition and a reducer aggregates all the 
reviews for distinct states. During our experiments we found 
that the execution of the workflow takes around 17 seconds 
for creating an output collection of size 6 MB. Thirdly, we 
created a workflow to get the list of users who posted 
reviews in a list of states. During workflow execution a map 
reduce program is executed to get the list of reviews that 
contain the match for one or more of the items in the list of 
states and the aggregated review are stored into a new 
collection in MongoDB. Fourthly, we created a workflow to 
break down the review into Year, Month and Date and 
hence the data scientist can easily visualize how many 
reviews were posted for a particular year and then perform 
more fine grained analysis such as get the reviews posted 
for a particular month and date, etc. 

In order to perform data collection, as shown in Figure 
5(b) we created a series of command line based p-
workflows known as KBB, Edmunds and MSN where data 
crawling procedures are executed internally and passed into 
a customized HTML parser, to extract consumer review 
information. Output from the three data collection 
workflows are passed as input to the data integration

DATAVIEW  
Data Type 

Description 

Scalar  to store data of following types: string, decimal, 
integer, non-positive integer, non-negative 
integer, positive integer, negative integer, 
unsigned int, unsigned long, unsigned short, 
unsigned byte, double, float, long, int, short, 
byte, boolean. 

Relational to store relation that are represented as tables.   
Collectional to store collection that are represented as key-

value pairs. 
XML to store xml documents that conforms to well 

formed xml value 
File to upload the file on server side and store 

physical path of the file. 
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workflow where the data is integrated together as one 
collection by executing the union operation on the input 
dataset.  

As shown in Figure 5(c), we created data extraction p-
workflows to extract the users meta data information 
automatically from the consumer reviews. Towards this end, 
we created a command line based p-workflow known as 
Gender which is primarily used to extract the gender of the 
user who posted the review. Suppose there is a review that 
contains the following text “My wife loves Ford Focus 2014”, 
the existence of the word “My wife” tells that the gender of 
the user is Male and hence a new output collection is created 
which contains the user meta data (Gender). In addition to the 
Gender, we created three more p-workflows known as 
Location, Age and Race to extract the User meta data 
information based on the existence of predefined set of words 
and pass the output data from the user meta data workflows to 
the data integration workflow where the data is integrated 
together and stored as a new collection. in the MongoDB 
cluster. Due to space limitation, in this paper, we have not 
shown much of the implementation details of the user meta 
data extraction workflows.  

VI. RELATED WORK 
The notion of the shimming problem was first coined in 

[6]. Due to the heterogeneous nature of the data involved in 
solving complex scientific problems, output of one program or 
application will not be always compatible with another 
program or application and hence the interoperability of both 
programs and applications is a challenge. The challenge of 
interoperability between the mixed data types is often termed 
as “shim” and there has been much work done in classifying 
and solving the shimming problem. Shim is broadly classified 
into 1) semantic compatibility 2) syntactic compatibility. Hull 
et al. [6] introduced shims as a technique to align or mediate 
mismatching third party Web services that has incompatible 
input and output. Other work has been done to solve the 
shimming problem in literature such as Szomszor et al. [11] in 
which a mapping language is proposed to use OWL ontologies 
in order to capture the semantics of a data source and the 
instances of these ontology concepts are used to support 
conversion of data between different formats. Although this 
technique introduces the ontological model that can be used to 
solve the shimming problem to some extent from the semantic 
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incompatibility perspective, it is very complex to implement 
and is not usable. Ambite and Kapoor [1] proposed an 
approach to solve the shimming problem by automatically 
inserting the shims into scientific workflow but the approach 
only supports relational data and does not have any 
contribution towards other data types. 

Lin et al. [12] proposed the task model in scientific 
workflow and classified the shimming problem into TYPE-I 
and TYPE-II shimming problems. Further this approach 
uniquely allows shims to be either invisible or visible at the 
workflow level, supporting both functional and operational 
perspective of scientific workflows Although the work was 
well cited and accepted in the scientific workflow community, 
the proposed task registration model is much complicated as 
the model contains more than one component within a single 
task and the shimming needs to be done while registering a 
task into the system through complex mapping between the 
components within a task. Kashlev et al. [13] proposed to 
reduce the shimming problem in scientific workflow to the 
runtime coercion problem and defined the notion of well typed 
workflow. But this approach did not address the data mapping 
challenges incurred during registration of a p-workflow and 
did not provide any solution to guarantee interoperability 
between the p-workflow and other upstream/downstream 
workflows connected to it .  

None of the above technique addresses the shimming 
problem that exists in registering third party applications such 
as web services and command line based applications as a p-
workflow , which is the focus of this paper. In this paper, we 
provide two solutions:  

1) For a command line based application, we formulated 
the IP2I and O2OP mapping table and proposed the 
solution in a case by case approach. 

2) For a Web service based application, we provided a 
solution to separate the registration from the 
configuration, thereby easing the registration process 
of a Web service operation as a p-workflow into our 
DATAVIEW system. Shimming is automatically 
done inside the p-workflow using the user driven 
configuration mechanism. In addition, our approach 
also parses the WSDL file automatically to get the 
input and output information and hence automates the 
conversion of a workflow unaware Web service 
operation as a p-workflow from end to end and 
manage to guarantee interoperability with both 
upstream and downstream workflows. 

    In this paper, we also addressed challenges incurred 
during analyzing and processing large datasets in scientific 
workflow, by integrating MongoDB, a NoSQL database 
within our DATAVIEW system as a preliminary step to 
perform big data analysis and processing.  

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we first proposed a new primitive workflow 

model, to overcome the limitations of the previous multiple-
component based task model, in which we separate   

the registration from the configuration of p-workflow, thereby 
making the registration process simple and usable. Our new 
model eases the registration process and hence there is no need 
to do mapping between multiple task components inside the p-
workflow. Second, we proposed a shim generation algorithm 
to solve the shimming problem raised in Web services by 
automatically inserting invisible shims and wrapping it around 
the p-workflow. Third, we integrated MongoDB , an open 
source document oriented database, into our DATAVIEW 
system in order to support big data management and 
processing. Finally, we implemented the proposed models and 
algorithm in our DATAVIEW system and presented a case 
study to validate them. Ongoing work includes extension of 
the primitive workflow model to support registration and 
execution of a p-workflow in cloud and grid computing 
environments. 
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