
Addressing the Shimming Problem in Big Data Scientific Workflows

Aravind Mohan, Shiyong Lu, Alexander Kotov
Wayne State University

Detroit, MI, USA
{aravind.mohan, shiyong, kotov}@wayne.edu

Abstract—Substantial amount of research has been done
recently to address the shimming problem in scientific
workflows, in which a special kind of adaptors, called shims,
are inserted between workflow tasks to resolve the data type
incompatibility issue. Recently, scientific workflows are
increasingly used for big data analysis and processing, which
poses additional challenges, such as volume, velocity and
variety of data to the shimming problem. One issue is to scale
the registration and configuration procedure to a large number
of workflow tasks. Another issue is the ease of integrating a
large number of remote Web services and other heterogeneous
task components that can consume and produce data in
various formats and models into a uniform and interoperable
workflow. Existing approaches fall short in usability and
scalability in addressing these issues. In this paper we 1)
propose a new simplified single-component based task model
based on extensive experiences and lessons learned from our
original multiple-component based task model. The new model
separates registration from configuration and eases the process
of registering external functional components (such as Web
services) into p-workflows; 2) propose a shim generation
algorithm that elegantly solves the shimming problem raised
by Web service based scientific workflows; and 3) we integrate
MongoDB , a NoSQL document-oriented database system for
storing and managing large-scale unstructured documents. A
new version of the DATAVIEW system has been developed to
support the proposed techniques and a case study has been
conducted to show the feasibility and usability of our proposed
techniques.

Keywords-shimming; scientific workflow; big data;

I. INTRODUCTION
In recent years, the term “big data” has become a

buzzword in both industry and academia. It is frequently
used to refer to the method of processing and analyzing large
amounts of heterogeneous types of data to mine hidden
patterns, correlations, trends, and other useful information to
guide enterprise decisions and strategies for cutting cost or
increasing revenues [14, 15]. Scientific workflows, which
were originally developed for automating the data analysis
process of scientific data (often large in volume and vary in
types) to enable and accelerate scientific discovery, are now
increasingly used for the processing and analysis of business
data as well. However, the challenges of big data, including
volume, velocity, and variety pose additional challenges to
scientific workflow research.

The shimming problem has received much attention in
the scientific workflow community [6, 11, 12, 13], in which
special kinds of adaptors, called shims, are inserted between

workflow tasks to resolve the data type incompatibility issue.
However, to meet the challenges of big data, several issues in
the existing approaches need to be examined. The first issue
is to scale the registration and configuration procedure to a
large number of workflow tasks, which is critical for big data
workflows. The second issue is to ease the integration of a
large number of remote Web services and other
heterogeneous task components, such as command line
executables, that can consume and produce data in various
formats and data models into a uniform and interoperable
workflow. In particular, we examine automatic shim
generation techniques for third-party Web services, whose
development were not workflow-aware.

 The contributions of the paper are: 1) based on
extensive experiences and lessons from our previously
proposed multiple-component based task model [12], we
propose a new simplified single-component based task
model. The new model separates registration from
configuration and eases the process of registering external
functional components (such as Web services) into p-
workflows; 2) we propose a shim generation algorithm,
called GenShims, that elegantly solves the shimming
problem raised by Web service based scientific workflows;
3) we integrate MongoDB , a NoSQL document-oriented
database system for storing and managing large-scale
unstructured documents. A new version of the DATAVIEW
system has been developed to support the proposed
approaches.

II. PRIMITIVE WORKFLOW MODEL
Primitive workflows (a.k.a. tasks or p-workflows) are the

basic building blocks of a scientific workflow. Composite
workflows were used to represent workflows that consist of
multiple workflows. Our previously proposed task model
[12], contains multiple components inside a single task and
hence complicates the registration process as complex
shimming needs to be done between the components at
design time in order to register any task as a p-workflow. In
our new model, we elegantly solve this problem by having
only one component inside a task and ease the registration
process. At design time, we also provide a configuration
mechanism through which we get the input and output port
information from the user, when necessary.

One appealing feature of our new primitive workflow
model is that it provides an abstraction technique, in which
different heterogeneous task components can be abstracted
into uniform p-workflows so that they can interoperate with
one another. While a task manager needs to be aware of the

2014 IEEE International Conference on Services Computing

978-1-4799-5066-9/14 $31.00 © 2014 IEEE

DOI 10.1109/SCC.2014.53

347

 (a) (b)

Figure 1 (a) our proposed primitive workflow model; and (b) a classification of p-workflows.

implementation details of each p-workflow in order to know
how to register it as a p-workflow; once registered, such
implementation details are hidden from the workflow
engineer, who can drag and drop any p-workflow into the
design panel, regardless of how it is implemented and
connect them with one another into a composite workflow.

In our system, we provide a user friendly GUI for the
design and modification of p-workflows. As shown in Figure
1(b), using our model, we classify p-workflows into the
following:

1) System Defined operations. They are also called
built-in p-workflows. These p-workflows come with
a DATAVIEW installation. Examples of such p-
workflows include the logical operations (such as
AND, OR, and NOT) and relational algebra
operators (such as SELECTION, PROJECTION,
and UNION).

2) User Defined Operations. These are the p-workflows
that are provided by task engineers through
registration and configuration. The task engineer
provides the task interface and its implementation
detail during the registration process. Examples of
such p-workflows include command line based
applications and web service based applications.

In order to simplify the workflow design process and to
emphasize the usability of our system, we maintain a
workflow repository through which our users can easily
access existing workflows and use them to compose more
complex workflows in the workflow design panel
Furthermore, in our model, we separate workflows into two
categories: reusable workflows and executable workflows.
Reusable workflows are complex operations designed
without connecting any input and output data products to the
workflow, thereby they are mainly used by the workflow
engineer to build reusable templates. On the other hand,
executable workflows contain input and output data products
connected to the input ports of workflows, and they are
mainly used by data scientists to perform data analysis and
processing. Workflow design is supported through our
workflow specification language known as SWL that defines
a scientific workflow according to the DATAVIEW
Workflow Model [7], through which one can create scientific
workflows with different layers of granularity in a nested
manner. SWL, which is automatically created on the server
side while designing any workflow, is formulated by

translating the workflow diagram that is represented in our
workflow visualization language (mxGraph). mxGraph is
mainly used at the client side to render and visualize a
workflow as a diagram. While a workflow is saved in our
system, both the mxGraph and SWL specifications are
serialized and stored into our database. As shown in Figure
1(a), our proposed new primitive workflow model consists of
the following three layers:

1) Logical Layer: The Logical layer contains the p-
workflow interface that models the port details of the
workflow such as input port ID, input port type,
output port ID, and output port type. At run time, the
data flow occurs through the data channel
connecting the source workflow constituent to the
destination workflow constituent.

2) Mapping Layer: The Mapping layer contains a list
of mapping information such as mapping of an input
port of the p-workflow interface to an input of the p-
workflow component (IP2P) and mapping of an
output of the p-workflow component to an output
port of the p-workflow interface (O2OP).

3) Physical Layer: The Physical layer contains only
one p-workflow component at a time, that models
the service and or application that is used to
implement the task. Hence registration of p-
workflow is made simple. Heterogeneous
characteristics of the p-workflow are captured and
modeled in this layer including the inputs, outputs,
location of workflow component (such as Web
service WSDL file, command line executable file.)

Using our primitive workflow model, task engineers can
easily register a command line based application as a p-
workflow by uploading their executable into our
DATAVIEW server and providing configuration details,
such as input type, input mode, output type, and output
mode. As shown in Tables 1(a) and 1(b), we formulated a
mapping table based on different cases that a command line
application can fall under in respect to the input and output
types. We identified the following 6 input modes: 1)
ByValue – the IP2I mapper pass the value from the input
port as an input argument during component invocation; 2)
ByFile – the IP2I mapper generate unique file name, create
the file and write content from the input port into the file,
pass file name as an argument during component invocation;
3) ByFixedFile – the IP2I mapper create a file with the fixed

348

 Table 1(a) IP2I mapping table.

Table 1(b) O2OP mapping table.

 Figure 2 Command line based p-workflow.

file name and write content from the input port into the file,
pass file name as an argument during component invocation;
4) ByStdin – the IP2I mapper gets the value from the input
port and pipe it to the input stream during component
invocation; 5) ByEnv – the IP2I mapper will create
environment variable with a user driven name and take the
value from the input port and write into it during the
component invocation; 6) ByConst – the IP2I mapper simply
add a constant value as one of the argument during
component invocation. On the other hand, we identified the
following 3 output modes: 1) ByValue –the O2OP mapper
simply takes the output that is returned during the component
execution which could be either stdout or exit code and binds
it to the output port; 2) ByEnv – the O2OP mapper will fetch
the value from the environment variable using the name
provided by user during registration and bind the value to the
output port during component execution; 3) ByFile – the
O2OP mapper will simply fetch the value from the file name
which is provided through one of the arguments and bind the
value to the output port during component execution.

In order to demonstrate the strength of our model, we
implemented and tested six cases in which a command line
executable can be registered and configured into a p-
workflow in our DATAVIEW system. Due to space
limitation, we have shown only one case:

Case 1: suppose we created a command line java
application addition1.class which takes two command line
arguments, both of Integer type, and produces the sum of the
two integers as the stdout. After converting addition1.class
into a p-workflow pw_addition1, the IP2I mapper will take
the two integers from input ports i1, i2 and then use them as
two command line arguments (inputs) for pw_addition1,
after the execution of pw_addition1, the O2OP mapper will
route the output in the stdout to output port o1 for
pw_addition1. Figure 2 shows a simple example of a
scientific workflow of case1 implemented in our system.

We identify the following advantages of our primitive
workflow model:
� Domain Proficiency: Since the developers of these

third party applications are experts in the domain and
the software components are well studied and
implemented, using it within a scientific workflow is a
big advantage and simplifies the workflow design
process through the anatomy of reusability and sharing.

� Reliability: These third party applications are highly
reliable because they are used by many scientists all
over the world and hence most of the problems/bugs in
the software will be fixed promptly.

� Infrastructure: Most of third party applications such
as Web services are hosted in a remote server and
hence high computation cost is not an issue as the
infrastructure is available free through invoking the
Web service.

� Support: Many third party applications are free to
download, install and also have a forum where people
discuss various issues and fixes about these software
components.

III. SHIM GENERATION ALGORITHM FOR WEB SERVICE
BASED SCIENTIFIC WORKFLOWS

In this section, we first propose an approach to solve the
shimming problem in our DATAVIEW system, that occurs
during registration of any Web service based p-workflow
through a user-driven configuration mechanism and then
provide a shim generation algorithm to translate a p-
workflow into a composite workflow by wrapping two
special adaptors known as pCombiner and pSplitter shims
around the p-workflow. Next, we demonstrate an example of
how our GenShims algorithm works.

3.1 Addressing the shimming problem
Because of the heterogeneous nature of scientific

workflows, our system provides a platform to register

349

 Figure 3(a) Web service based p-workflow.

primitive-workflows from different sources such as Web
services, command line applications. However, this then
becomes an issue because of the incompatibility of data
types between the input/output port of a p-workflow and
input/output of component connected to it. Due to the
shimming problem that exists during the workflow
composition, at run time the p-workflow is not interoperable
with other types of workflow constituents. Through a user
driven configuration mechanism, we separate the shimming
problem from registration and thereby making p-workflow
registration simple and usable. After registering the p-
workflow, the shimming problem is solved by configuring
the input and output port of any arbitrary p-workflow and the
system automatically creates instances of two special kinds
of shims known as pCombiner and pSplitter. Finally a new
wrapper workflow is created on the fly during the p-
workflow configuration with the instances of pCombiner and
pSplitter inserted into the new wrapper workflow. In this
way we hide the shim at the workflow level and abstract the
existence of shim from the data scientist perspective, but
during workflow execution, a shim automatically does the
conversion based on the configuration details provided by
the workflow designer. Data scientists would simply need to
drag and drop the wrapper workflow, connect data products
to it and execute the workflow to view the results.

In our DATAVIEW system, a task engineer can easily
register any arbitrary Web service operation by providing
the system with the WSDL file of any arbitrary Web
service. We implemented WSDL parser functionality within
our system that can automatically get the input and output of
an operation from the WSDL and convert it into the input
and output port of the workflow. Additionally we generated
automatically two special shims: pCombiner and pSplitter.
pCombiner shim, is a special kind of shim adaptor that takes
in any number of arbitrary data from the input ports of
arbitrary types and create a new data product of type XML
and bind the XML data to the output port. The pSplitter
shim, is another special kind of shim adaptor that

Figure 3(b) Workflow Specification (SWL) with
 shim inclusion.

takes in data from the input port of type XML and extract
the elements inside it in a unique manner and split the result
into multiple outputs, which are then bound to multiple
output ports. Input port details of the pCombiner such as (no
of input ports, input port types) and output port details of the
pSplitter such as (no of output ports, output port types) are
identified during the p-workflow configuration. As shown in
Figure 4, the proposed GenShims algorithm takes an input
p-workflow ws1 and converts it into a composite workflow
c-ws1.

<workflowSpec>
<workflow name="ws_pWorkflowOp1" root="true">
<workflowInterface>
 <inputPorts>
<inputPort>
<portID>i0</portID>
<portName>i0</portName>
<portType>Integer</portType>
</inputPort>
<inputPort>
<portID>i1</portID>
<portName>i1</portName>
<portType>Integer</portType>
</inputPort>
</inputPorts>
 <outputPorts>
<outputPort>
<portID>o0</portID>
<portName>o0</portName>
<portType>Integer</portType>
</outputPort>
<outputPort>
<portID>o1</portID>
<portName>o1</portName>
<portType>Integer</portType>
</outputPort>
</outputPorts>
</workflowInterface>
<workflowBody mode="graph-based">
<workflowGraph>
<workflowInstances>
<workflowInstance id="pWorkflowOp1">
<workflow>pWorkflowOp1</workflow>
</workflowInstance>
<workflowInstance id="pCombiner19">
<workflow>pCombiner19</workflow>
</workflowInstance>
<workflowInstance id="pSplitter19">
<workflow>pSplitter19</workflow>
</workflowInstance>
</workflowInstances>
<dataChannels>
<dataChannel from="pWorkflowOp1.o1" to="pSplitter19.i1"/>
<dataChannel from="pCombiner19.o1" to="pWorkflowOp1.i1"/>
</dataChannels>
</workflowGraph>
<G2W>
<inputMapping from="this.i0" to="pCombiner19.i1"/>
<inputMapping from="this.i1" to="pCombiner19.i2"/>
<outputMapping from="pSplitter19.o1" to="this.o0"/>
<outputMapping from="pSplitter19.o2" to="this.o1"/>
</G2W>
</workflowBody>
</workflow>
</workflowSpec>

350

In order to create the composite workflow c-ws1, our
algorithm creates both workflow specification (SWL) and
visualization (mxGraph) for the workflow automatically.
Our pCombiner is IP2I mapper for Web service based p-
workflow and each time GenShims algorithm is executed, it
creates a new instance of pCombiner. On the other hand, the
pSplitter shim is an O2OP mapper for Web service based p-
workflow and each time the GenShims algorithm is
executed, it creates a new instance of pSplitter. Figure 3(b),
shows the SWL of ws_pWorkflowOp1 that contains the
pCombiner, pSplitter and pWorkflowOp1 (p-workflow)
respectively in our DATAVIEW system. Our approach
currently works for Web services with primitive types of int
and string for the following cases of web service operation:
one input and one output, one input and multiple outputs,
multiple inputs and one output, multiple inputs and multiple
outputs, no input and one output, no input and multiple
outputs, no input and no output, one input and no output,
multiple inputs and no output. In the future, we will explore
the above cases with complex data types as inputs and
outputs.

3.2 Example of Shim Generation.
Figure 3(a) shows an example of shim generation for

Web service based workflows. To simply the explanation,
we developed a Web service ws_addsubtract in Java, which
takes a pair of integers a and b, and returns their sum and
difference, respectively as two integers c and d. After
registering the WSDL URL of this Web service.
(http://dmsg2.cs.wayne.edu/axis2/services/pWorkflow1?ws
dl) in DATAVIEW, the system automatically extracts all the
operations of the Web service. In our case, the user selects
the only operation available, pWorkflowOp1, and the system
automatically convert it into p-workflow pWorkflowOp1.
This workflow has one input port of XML type and one
output port of XML type. The user can then click the
configure link in this workflow, which allows the user to
choose the number of input ports (which is 2) and the
number of output ports (which is also 2). After the
completion of the configuration, two shims, pCombiner19
and pSplitter19, are generated automatically, and a new
complex workflow cw_pWorkflowOp1 is constructed.
Workflow cw_pWorkflowOp1 contains two input ports a
and b, and two output ports c and d. Figure 2 shows one
case of execution with inputs a=4 and b=3, displaying all
the intermediate values of each step.

IV. INTEGRATION OF NOSQL DATABASE
NoSQL databases are distributed and schemaless

databases that have recently emerged as a technology
developed to address the need to store and process huge
volumes of data. Existing NoSQL databases such as Riak,
MongoDB , Cassandra, HBase, Neo4j enable horizontal
scalability across a large number of commodity servers. In
DATAVIEW, we integrated MongoDB within our

 Figure 4 GenShims Algorithm.
data product manager to store and manage different data
products. MongoDB is a scalable, open source document-
oriented database that is commonly classified as a NoSQL
database. MongoDB uses JSON-like documents with no
schema to store data inside different collections. In
DATAVIEW, execution of a scientific workflow consumes
and produces huge amount of distributed data objects. These
data objects are heterogeneous of various data types. A
scientific workflow might use mixed data types as the data
could be any form and aligns well with the schemaless and
scalable nature of MongoDB . In DATAVIEW, we provide
an abstraction of data objects stored in MongoDB as a data
product.

Three challenges of Big Data namely the volume,
velocity and variety is a key issue focused today in both
academia and industry. Data can be from different sources
and the system should have the capability to some how

Algorithm: GenShims
Input: Primitive Workflow ws1
Output: Composite Workflow c_ws1
Begin
1. If ws1 is of type web service
2. Then extract configuration details such as input port

name{In), input port type(It), output port name(On),
output port type(Ot) by parsing the wsdl file of the
primitive workflow ws1.

3. Auto populate port details in the configuration section
of the primitive workflow ws1, with an option for the
users to modify or add new port information.

4. Create a new instance of the combiner shim (C) ,
which takes in arbitrary number of input ports of
name In and type It and combine them into an output
Oc of type XML.

5. Create a new instance of the splitter shim (S) , which
takes in XML input Is and parse the XML to extract
all the values inside it and split them into a series of
outputs of name On and type Ot.

6. Create SWL for composite workflow c-ws1 with the
workflow interface that has input ports In with port
type It and output ports On with port type Ot.

7. Append the workflow instances section to SWL that
was created in step 6 with the instances pCombiner,
ws1,and pSplitter.

8. Append the dataChannel section to SWL with the
following source -> destination data flow construct.

a) Output from the combiner shim (Oc) to the
input of the primitive workflow ws1.

b) Output of the primitive workflow ws1 to the
input of the splitter shim (Is).

9. Create the mxGraph diagram for the composite
workflow c_ws1 with the input port In of type It
connected to pCombiner input port. Output of
pCombiner connected to the input of ws1. Output of
ws1 connected to the input of pSplitter. Output of
pSplitter connected to the output port On of type Ot

10. Else
11. No shim required to be inserted.

End Algorithm

351

register and import the data and perform analysis and Table 2 Data Types supported in DATAVIEW.
process the data. One of the main advantages of integrating
MongoDB in our system is that, it is horizontabally
scalable across the commodity servers and hence the data
from the scientists can be shipped through our data product
manager with high performance. Another advantage is
MongoDB offers MapReduce support at the database level
to process huge amounts of data into meaningful aggregated
results. MongoDB applies the map phase to each document
inside the collection that matches the query condition and
emits a (key, value) pairs. And then the reduce phase is run
for those keys that contain multiple values and data is
collected and aggregated to form a new collection in the
database. Our solution to address the challenge occurred by
such a large variety of types in big data is to use a custom
approach to classify different data types and then perform
shimming to transform data into one of the DATAVIEW
data types. As shown in Table 2, we defined the notion of
DATAVIEW data type in our system and broadly classify
data products into the following categories: 1) scalar 2)
relational 3) collectional 4) XML and 5) file.

V. CASE STUDY
In our DATAVIEW system, we created several

automotive consumer review big data primitive workflows
in order to collect, merge, extract, and analyze the raw data
from automotive review websites, including KBB, Edmunds,
and MSN Autos. As part of our case study, we deployed a
MongoDB sharded cluster in FutureGrid that provides a
schemaless, horizontabally scalable, and MapReduce
enabled data storage and processing in a cluster
enivronment. In order to deploy the MongoDB cluster, we
created one VM instance with 4 GB memory and 40 GB
disk space. In addition, we created 3 VM instances with
each 2 GB memory and 40 GB disk space and setup the
config servers which contains the metadata information such
as shard and block level information. In MongoDB, the
config servers are single point of failure and hence we
created 3 instances for replication purpose on node failure.
Finally we created 3 more VM instances with each 4 GB
memory and 60 GB disk space and setup the mongod shards
that contains the actual data sharded (split inside chunk and
new chunks). In addition to deploying the sharded cluster,
we also integrated the MongoDB Java driver within our
DATAVIEW system, in order to make a connection with
the MongoDB cluster and perform several operations on the
data.

As shown in Fgiure 5(a), we created an automotive
consumer review analysis workflow. Firstly, we created a
non map reduce p-workflow known as SearchNonMR that
takes in three inputs (AutoReview, FieldName1,
SearchTerm1) and query the FieldName on the master node
of the MogoDB cluster with an or condition to find the
match for the list of search terms provided by the user such
as “MPG, Fuel Economy, Excessive comsumption”.
During our experiments we found that the execution of the

workflow is time consuming and takes around 629 seconds
for inserting 8425 (11.25 MB) records into a new collection
in the MongoDB cluster. Secondly, we created two map
reduce p-workflows known as SearchLevel1MR and
SearchLevel2MR to process the consumer review dataset in
a map reduce manner and break down the data into State
and City level. SearchLevel1MR takes in 3 inputs
(AutoReview, FieldName2, SearchTerm2) and execute the
map reduce program written with a mapper that emits
(Search Term, Review) based on a REGEX match condition
and a reducer that aggregates all the review for distinct
search terms. Output of the map reduce function is
automatically binded to a new collection inside the
MongoDB cluster. Output from the SearchLevel1MR is
passed as input to SearchLevel2MR which would execute a
map reduce program with a mapper that loops through each
item in the aggregated review and for each review item it
emits for example (State Name, Review) based on a
REGEX match condition and a reducer aggregates all the
reviews for distinct states. During our experiments we found
that the execution of the workflow takes around 17 seconds
for creating an output collection of size 6 MB. Thirdly, we
created a workflow to get the list of users who posted
reviews in a list of states. During workflow execution a map
reduce program is executed to get the list of reviews that
contain the match for one or more of the items in the list of
states and the aggregated review are stored into a new
collection in MongoDB. Fourthly, we created a workflow to
break down the review into Year, Month and Date and
hence the data scientist can easily visualize how many
reviews were posted for a particular year and then perform
more fine grained analysis such as get the reviews posted
for a particular month and date, etc.

In order to perform data collection, as shown in Figure
5(b) we created a series of command line based p-
workflows known as KBB, Edmunds and MSN where data
crawling procedures are executed internally and passed into
a customized HTML parser, to extract consumer review
information. Output from the three data collection
workflows are passed as input to the data integration

DATAVIEW
Data Type

Description

Scalar to store data of following types: string, decimal,
integer, non-positive integer, non-negative
integer, positive integer, negative integer,
unsigned int, unsigned long, unsigned short,
unsigned byte, double, float, long, int, short,
byte, boolean.

Relational to store relation that are represented as tables.
Collectional to store collection that are represented as key-

value pairs.
XML to store xml documents that conforms to well

formed xml value
File to upload the file on server side and store

physical path of the file.

352

workflow where the data is integrated together as one
collection by executing the union operation on the input
dataset.

As shown in Figure 5(c), we created data extraction p-
workflows to extract the users meta data information
automatically from the consumer reviews. Towards this end,
we created a command line based p-workflow known as
Gender which is primarily used to extract the gender of the
user who posted the review. Suppose there is a review that
contains the following text “My wife loves Ford Focus 2014”,
the existence of the word “My wife” tells that the gender of
the user is Male and hence a new output collection is created
which contains the user meta data (Gender). In addition to the
Gender, we created three more p-workflows known as
Location, Age and Race to extract the User meta data
information based on the existence of predefined set of words
and pass the output data from the user meta data workflows to
the data integration workflow where the data is integrated
together and stored as a new collection. in the MongoDB
cluster. Due to space limitation, in this paper, we have not
shown much of the implementation details of the user meta
data extraction workflows.

VI. RELATED WORK
The notion of the shimming problem was first coined in

[6]. Due to the heterogeneous nature of the data involved in
solving complex scientific problems, output of one program or
application will not be always compatible with another
program or application and hence the interoperability of both
programs and applications is a challenge. The challenge of
interoperability between the mixed data types is often termed
as “shim” and there has been much work done in classifying
and solving the shimming problem. Shim is broadly classified
into 1) semantic compatibility 2) syntactic compatibility. Hull
et al. [6] introduced shims as a technique to align or mediate
mismatching third party Web services that has incompatible
input and output. Other work has been done to solve the
shimming problem in literature such as Szomszor et al. [11] in
which a mapping language is proposed to use OWL ontologies
in order to capture the semantics of a data source and the
instances of these ontology concepts are used to support
conversion of data between different formats. Although this
technique introduces the ontological model that can be used to
solve the shimming problem to some extent from the semantic

(a)

Edmunds

MSN

Data Integration

Data Collection

KBB

(b)

(c)

Data Merging

Data Analysis

Figure 5 (a) Automotive Consumer Review Analysis Big Data Workflow; (b) Data Collection/Integration
Workflow; (c) User Meta Data Extraction Workflow.

Data Extraction

Gender

Location

Age
Data Extraction

Data Integration

Race

353

incompatibility perspective, it is very complex to implement
and is not usable. Ambite and Kapoor [1] proposed an
approach to solve the shimming problem by automatically
inserting the shims into scientific workflow but the approach
only supports relational data and does not have any
contribution towards other data types.

Lin et al. [12] proposed the task model in scientific
workflow and classified the shimming problem into TYPE-I
and TYPE-II shimming problems. Further this approach
uniquely allows shims to be either invisible or visible at the
workflow level, supporting both functional and operational
perspective of scientific workflows Although the work was
well cited and accepted in the scientific workflow community,
the proposed task registration model is much complicated as
the model contains more than one component within a single
task and the shimming needs to be done while registering a
task into the system through complex mapping between the
components within a task. Kashlev et al. [13] proposed to
reduce the shimming problem in scientific workflow to the
runtime coercion problem and defined the notion of well typed
workflow. But this approach did not address the data mapping
challenges incurred during registration of a p-workflow and
did not provide any solution to guarantee interoperability
between the p-workflow and other upstream/downstream
workflows connected to it .

None of the above technique addresses the shimming
problem that exists in registering third party applications such
as web services and command line based applications as a p-
workflow , which is the focus of this paper. In this paper, we
provide two solutions:

1) For a command line based application, we formulated
the IP2I and O2OP mapping table and proposed the
solution in a case by case approach.

2) For a Web service based application, we provided a
solution to separate the registration from the
configuration, thereby easing the registration process
of a Web service operation as a p-workflow into our
DATAVIEW system. Shimming is automatically
done inside the p-workflow using the user driven
configuration mechanism. In addition, our approach
also parses the WSDL file automatically to get the
input and output information and hence automates the
conversion of a workflow unaware Web service
operation as a p-workflow from end to end and
manage to guarantee interoperability with both
upstream and downstream workflows.

 In this paper, we also addressed challenges incurred
during analyzing and processing large datasets in scientific
workflow, by integrating MongoDB, a NoSQL database
within our DATAVIEW system as a preliminary step to
perform big data analysis and processing.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we first proposed a new primitive workflow

model, to overcome the limitations of the previous multiple-
component based task model, in which we separate

the registration from the configuration of p-workflow, thereby
making the registration process simple and usable. Our new
model eases the registration process and hence there is no need
to do mapping between multiple task components inside the p-
workflow. Second, we proposed a shim generation algorithm
to solve the shimming problem raised in Web services by
automatically inserting invisible shims and wrapping it around
the p-workflow. Third, we integrated MongoDB , an open
source document oriented database, into our DATAVIEW
system in order to support big data management and
processing. Finally, we implemented the proposed models and
algorithm in our DATAVIEW system and presented a case
study to validate them. Ongoing work includes extension of
the primitive workflow model to support registration and
execution of a p-workflow in cloud and grid computing
environments.

ACKNOWLEDGEMENT
This work is partially supported by U.S. National Science
Foundation under CCF 0845711.

REFERENCES
[1] J. Ambite and D. Kapoor. Automatically composing data workflows

with relational descriptions and shim services. In ISWC/ASWC, pages
15–29, 2007.

[2] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
VisTrails: visualization meets data management. In SIGMOD
Conference, pages 745–747, 2006.

[3] S. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD Conference, pages 1345–
1350, 2008.K. Elissa, “Title of paper if known,” unpublished.

[4] E. Deelman and A. Chervenak. Data management challenges of data-
intensive scientific workflows. In CCGRID, pages 687–692, 2008.

[5] D. Hull, R. Stevens, and P. Lord. Describing web services for user-
oriented retrieval. In Proc. of W3C Workshop on Frameworks for
Semantics in Web Services, pages 9–10, 2005.

[6] D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shimantic
web syndrome with ontologies. In AKT- SWS04, 2004.

[7] C.Lin,S.Lu,X.Fei,A.Chebotko,Z.Lai,D.Pai,F.Fotouhi, and J. Hua. A
reference architecture for scientific workflow management systems and
the VIEW SOA solution. IEEE Transactions on Services Computing,
2(1):79–92, 2009.

[8] C.Lin,S.Lu,Z.Lai,A.Chebotko,X.Fei,J.Hua,andF.Fotouhi. Service-
oriented architecture for VIEW: A visual scientific workflow
management system. In IEEE SCC, pages 335–342, 2008.

[9] B.Ludascher,S.Bowers,T.McPhillips,andN.Podhorszki. Scientific
workflows: More e-science mileage from cyberinfrastructure. In e-
Science, pages 145–152, 2006.

[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. Greenwood, T.
Carver, K. Glover, M. Pocock, A. Wipat, and P. Li. Taverna: A tool for
the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045– 3054, 2004.

[11] M. Szomszor, T. Payne, and L. Moreau. Automated syntactic medation
for web service integration. In ICWS, pages 127– 136, 2006.

[12] C. Lin, S. Lu, X. Fei, D. Pai and J. Hua, "A Task Abstraction and
Mapping Approach to the Shimming Problem in Scientific Workflows",
IEEE International Conference on Services Computing (SCC), pp.284-
291, Bangalore, India, 2009.

[13] A. Kashlev, S. Lu, A. Chebotko "Coercion Approach to the Shimming
Problem in Scientific Workflows", IEEE International Conference on
Services Computing (SCC), pp.416-423, Santa Clara, CA, 2014.

[14] S. Singh, N. Singh, "Big Data Analytics", IEEE International
Conference on Communication, Information and Computing Technology
(ICCICT), pp.1-4, Mumbai, 2012.

[15] http://www.01.ibm.com/software/data/infosphere/hadoop/what-is-big-
data-analytics.html.

354

