
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 2775

Scheduling Big Data Workflows in the Cloud under Budget Constraints

Aravind Mohan, Mahdi Ebrahimi, Shiyong Lu, Alexander Kotov
Wayne State University

Detroit, MI, USA
 {amohan, mebrahimi, shiyong, kotov}@wayne.edu

Abstract— Big data is fast becoming a ubiquitous term in
both academia and industry and there is a strong need
for new data-centric workflow tools and techniques to
process and analyze large-scale complex datasets that
are growing exponentially. On the other hand, the
unbound resource leasing capability foreseen in the
cloud facilitates data scientists to wring actionable
insights from the data in a time and cost efficient
manner. In the data-centric workflow environment,
scheduling data processing tasks onto appropriate
resources are often driven by the constraints provided
by the users. Enforcing a constraint while executing the
workflow in the cloud adds a new optimization challenge
on how to meet the objective while satisfying the given
constraint. In this paper, we propose a new Big dAta
woRkflow schEduler uNder budgeT conStraint known as
BARENTS that supports high-performance workflow
scheduling in a heterogeneous cloud computing
environment with a single objective to minimize the
workflow makespan under a provided budget
constraint. Our case study and experiments show the
competitive advantages of our proposed scheduler. The
proposed BARENTS scheduler is implemented in a new
release of DATAVIEW, one of the most usable big data
workflow systems in the community.

Keywords-Scheduler, BARENTS, Big Data

I. INTRODUCTION
Big data workflows [13] have recently emerged as a data-

centric workflow approach to analyze the data that is ever
increasing in scale, complexity, and rate of acquisition. Data
scientists develop workflows by modeling their complex
scientific applications as a set of data processing tasks with a
set of data dependencies between the tasks. Although this
approach facilitates the execution of tasks in a distributed
cloud computing environment [17,18,19], it also adds a
research challenge of how and where to schedule the tasks in
a distributed and heterogeneous cloud environment in a
usable manner [14]. The decision of how and where to
schedule the tasks in a workflow is driven by the Quality of
Service (QoS) requirements defined by data scientists such
as the budget or the deadline for the workflow execution.
The goal of the scheduling problem is to minimize the total
cost for executing the workflow or makespan (i.e. total
execution time of the workflow), while still meeting the QoS
requirement defined by data scientists.

Cloud service providers such as Amazon EC2 offer a
scalable infrastructure that allows an unlimited number of
virtual machines that can be provisioned for an amount of
time proportional to the cost for usage. There are different
types of instances that range from less powerful to more
powerful in terms of their CPU, memory, storage and
networking capacity. The cost per machine usage is billed on
an hourly rate with the cheapest resource offering the least
performance to the most expensive resource offering the
highest performance. The Amazon EC2 cloud service
provider provides an easily accessible application
programming interface through which the cloud resource
manager of the big data workflow system can provision and
deprovision resources. The primary responsibility of the
workflow engine in a big data workflow system is to
orchestrate the execution of the workflow by 1) identifying a
type of cloud resource that is appropriate for each set of tasks
in the workflow based on the QoS requirement; 2)
provisioning and deprovisioning a set of resources that are of
the identified resource types; 3) scheduling the tasks to the
appropriate cloud resources and initiate the distributed
execution process. The scheduling problem is non-trivial. In
fact, it is a well known NP-complete problem [1].

In this paper, we propose a new Big dAta woRkflow
schEduler uNder budgeT conStraint known as BARENTS
that supports high-performance workflow scheduling in a
heterogeneous cloud computing environment with a single
objective to minimize the workflow makespan under a
provided budget constraint. Our case study and experiments
show the competitive advantages of our proposed scheduler.
The proposed BARENTS scheduler is implemented in a new
release of DATAVIEW, one of the most usable big data
workflow systems in the community.

The rest of the paper is organized as follows. Section II
provides a background on our system model. Section III
introduces our BARENTS scheduling algorithm with an
overview and presents the pseudo code with an example.
Section IV presents our experimental results. Finally,
Sections V and VI present related work and conclusions.

II. MODEL
A cloud computing environment provides a framework

for enabling ubiquitous, on-demand access to a shared pool
of resources of heterogeneous types which can be
provisioned and deprovisioned with a minimal management
effort. The computation tasks and their data counterpart are
moved to the resources in the cloud, in order to perform the
actual execution of the tasks. Every individual resource is

2776

associated with a predetermined cost, computing speed
function and data communication rate function. More
formally a cloud computing environment is defined as:

Definition 2.1 (Cloud Computing Environment C): A
cloud computing environment is a 6-tuple C(R, RT, RC, FB,
FR, RS), where

• R is a set of resources. Each individual resource is
denoted by in the cloud computing environment.

• RT is a set of resource types such as {"t2.nano”,
“t2.micro”, “t2.small”, “t2.medium, “t2.large”,
…}.

• RC: R→ Q+ is the resource usage cost function.
RC(Ri), Ri ∈ R gives the cost in some dollar
amount for the resource usage Ri in the cloud
computing environment. The resource with the
minimum RC is called Rcheapest and the resource
with the maximum RC is called Rexpensive.

• FB: R × R → Q+
0 is the data communication rate

function. FB(Ri1, Ri2), Ri1, Ri2 ∈ R gives the data
communication rate between Ri1 and Ri2. Q+

0 is
some pre-determined unit like bytes per second.

• FR: R → Q+ is the resource computing speed
function. FR(Ri), Ri ∈ R gives the speed for the
computing resource Ri, measured in some pre-
determined unit like million instructions per
machine cycles or million instructions per
nanoseconds.

• FS: RT → R is the resource provisioning function.
FS(Rt), Rt ∈ RT returns a resource instance of the
resource type of Rt. □

 A big data workflow is the computerized modeling and
automation of a process consisting of a set of computational
tasks and their data interdependencies to process and
analyze a large amount of data. The big data workflow
consists of a set of interconnected tasks and their data
counterparts. Because one or more of the input datasets
connected to the tasks fall under the umbrella of big data,
there is a need for a distributed computing environment such
as the cloud to process the tasks in an efficient manner.
More formally, a big data workflow is defined as:

Definition 2.2 (Big Data Workflow W): A big data
workflow can be formally defined as a 4-tuple W = (T, D,
FT, FD), where

• T is a set of tasks in the workflow W. Each
individual task is denoted by Tk.

• D = {<Tk1, Tk2> | Tk1, Tk2 ∈ T, k1 ≠ k2; k1,k2 ≤ |T|,
Tk2 consumes data Dk1, k2 produced by Tk1} is a set
of data dependencies. Dk1,k2 represents an amount
of data required to be transferred after Tk1
completes and before Tk2 starts. Dk represents all
the output datasets from task Tk.

• FT: T→ Q+
0 is the execution cost function. FT (Tk);

Tk ∈ T gives the execution cost of a task Tk,
measured in some pre-determined unit like million
instructions per machine cycles or million
instructions per nanoseconds.

• FD: D → Q+
0 is the data size function. FD (Dk1,k2),

Dk1,k2 ∈ D gives the size of a dataset Dk1,k2,
measured in some predetermined unit like bits or
bytes. □

 A big data workflow graph is a weighted directed acyclic
graph that includes a set of vertices a.k.a. tasks and a set of
edges a.k.a. data dependencies, which represent the output
datasets that originate from one task and passed as an input
to another task in the workflow. We divide the workflow
graph into several partitions a.k.a. levels. Each partition in
the workflow graph has a set of vertices and a set of
outgoing edges that represent the data passed as input to the
next partition. The weight of the vertices is calculated by the
average task computation cost function and the weight of
the edges is calculated by the average data communication
cost function. More formally, a big data workflow graph is
defined as:

Definition 2.3 (Big Data Workflow Graph G): Given a
workflow W in a cloud environment C, a big data workflow
graph G, represents a weighted directed acyclic graph with
14-tuple G(T, D, R, , , , , , , , , P, TP,
RT), where

• the vertices of the graph represent a set of tasks T.
• the edges of the graph represent a set of data

dependencies D.
• R is a set of resources in the cloud environment.
• Fc: D×R×R → Q+

0 is the data communication cost
function. Fc (Dk1,k2, Ri1, Ri2), Dk1,k2 D, Ri1, Ri2
R gives the data communication cost of Dk1,k2 from
resource Ri1 to resource Ri2.

• : D →Q+
0 is the average data communication

cost function. (Dk1,k2), Dk1,k2 D gives the
average data communication cost of Dk1,k2 for all
the resources R, which is taken as the weight of
edge in the graph G. The weight of the edge is 0 for
the same resource.

• Fp: T×R → Q+ is the task computation cost
function. Fp(Tk, Ri), Tk T, Ri R gives the
computation cost of Tk on resource Ri.

• : T → Q+ is the average task computation cost
function, (Tk) gives the average computation
cost of task Tk, which is taken as the weight of
vertex in the graph G.

• Fm: D×R×R → Q+
0 is the data communication time

function. Fm (Dk1,k2, Ri1, Ri2), Dk1,k2 D; Ri1, Ri2
R gives the data communication time of Dk1,k2
from resource Ri1 to resource Ri2.

2777

• : D → Q+
0 is the average data communication

time function. (k1, k2), Dk1,k2 D gives the
average data communication time of Dk1,k2 for all
the resources R.

• Fn: T×R → Q+ is the task computation time
function. Fn(Tk, Ri), Tk T, Ri R gives the
computation time of Tk on resource Ri.

• : T → Q+ is the average task computation time
function, (Tk) gives the average computation
time of task Tk.

• P: N → T is the partition task function, P[j] or Pj
gives all the tasks of partition j. RPj represents the
set of resources assigned to the tasks in partition Pj.

• TP: T → N is the task partition function, TP [Tk] or
TPTk gives the partition number of task Tk.

• RT: P → RT is the partition resource type function.
RT[Pj] gives the resource type that is assigned to
partition Pj. □

 While executing a workflow on a set of resources in the
cloud, there is a cost and time incurred during the execution
process. Makespan is the total time taken to complete the
workflow execution. Each resource in the cloud has a type
associated with it. In addition, there is also a cost associated
with each type of resource per unit time. The execution of
the workflow on a cheapest resource take more time than
executing the workflow on an expensive resource. Because
there is a tradeoff between performance of the workflow
execution and the cost associated with the workflow
execution, we compute the cost associated with the
workflow execution at different level of granularity such as
the minimum, the average and the maximum completion
cost. In order to achieve our objective of minimizing the
makespan, we calculate the time taken to complete the
execution of each partition in the workflow. More formally,
we define the workflow execution environment as:

Definition 2.4 (Workflow Execution Environment WE):
Given a workflow W in a cloud environment C, a workflow
execution environment, represents the cost and time
incurred during the execution of the workflow with 5-tuple
WE (CC, , CT, minCC, maxCC), where

• CC: Partition R → Q+
0 is the workflow partition

completion cost function. CC(Pj , Ri), Pj ∈
Partition gives the sum of task computation cost of
all the tasks Tk ∈ Pj assigned to Ri as well as the
data communication cost for all the outgoing edges
from all the tasks Tk ∈ Pj. We formally define as:

CC (Pj , Ri1) = +

• : Partition → Q+
0 is the average workflow

partition completion cost function. (Pj), Pj ∈
Partition gives the sum of average task
computation cost of all the tasks Tk Pj and the

average data communication for all the outgoing
edges from all the tasks Tk ∈ Pj. We formally
define as:

(Pj) = (Tk) + (k, k1)

• CT: Partition → Q+
0 is the workflow partition

completion time function. CT(Pj), Pj ∈ Partition
gives the maximum of average task computation
time of all the tasks Tk ∈ Pj and the maximum of
average data communication time of all the
outgoing edges from all the tasks Tk ∈ Pj. We
formally define as:

CT (Pj) = { (Tk)} +
(Dk, k1)}

• minCC: Partition → Q+
0 is the minimum workflow

partition completion cost function. minCC(Pj), Pj ∈
Partition gives the sum of minimum task
computation cost of all the tasks Tk ∈ Pj and the
minimum data communication for all the outgoing
edges from all the tasks Tk ∈ Pj. We formally
define minCC as:

minCC =
• maxCC: Partition → Q+

0 is the maximum
workflow partition completion cost function.
maxCC (Pj), Pj ∈ Partition gives the sum of
maximum task computation cost of all the tasks Tk
∈ Pj and the maximum data communication for all
the outgoing edges from all the tasks Tk ∈ Pj. We
formally define maxCC as:

maxCC () = □
 At workflow run time, a user driven budget is allocated as
a dollar amount for the entire workflow. We compute the
sub-budget as a dollar amount for each partition in the
workflow based on the user provided budget. The sub-
budget is computed based on the average completion cost
for each partition. The partition with the high computation
intensive tasks and high data intensive outgoing edges has
more sub-budget than the partition with the low
computation intensive tasks and the low data intensive
outgoing edges. In addition to the sub-budget, there is also a
threshold provided to each partition as a dollar amount. The
threshold for a partition is computed based on the sub-
budget allocated to the next subsequent partition and the
completion cost incurred for executing the partition by using
the most expensive resource provided by the maximum
completion cost. The threshold is set to be always greater
than or equal to zero. The partition resource type (PRT)
function identifies the most expensive resource type for
each partition in a workflow while still meeting the budget
constraint. The goal of PRT function is to minimize the
completion time of the tasks in each partition. We minimize
the workflow makespan by applying PRT for each partition
in the workflow.

2778

Definition 2.5 (Workflow Partition Cost PC): Given a
workflow W in a cloud computing environment C and a
budget B, a workflow partition cost represents the budget
allocated to each partition of the workflow and the actual
cost incurred at each partition of the workflow with 6-tuple
PC(SB, Threshold, PRT, ACC, Credit, Debit), where

• SB: Partition → Q+ is the sub-budget function.
SB(Pj), Pj ∈ Partition gives the sub-budget
assigned to the partition Pj and can be calculated
formally as follows:

SB (Pj) = [(Pj) /] * B
• Threshold: Partition→ Q+ is the threshold function.

Threshold(Pj), Pj Partition gives the threshold
assigned to the partition Pj. It can be calculated as
follows:

Threshold (Pj) = Max {0, SB (Pj +1)
– maxCC (Pj +1)}

• PRT: Partition R SB Threshold → RT is the
partition resource type function that is used to
identify the most expensive resource type for each
partition. PRT is based on the criteria that the total
completion cost for all the tasks in the partition is
less than equal to the sum of the sub-budget and
the threshold assigned to the partition.

• ACC: Partition → Q+ is the actual completion cost
that is used to compute the total cost for
completing all the tasks in a partition, that are
assigned to the resources of a particular resource
type. Supposedly, all the tasks in partition j are
assigned to RT[j] then ACC can be formally
calculated as:

ACC [Pj] =
• Credit: Partition → Q+ is the credit function.

Credit(Pj), Pj ∈ Partition gives the credit assigned
to the partition Pj. It can be calculated as follows:

Credit [Pj] = Max{0, SB (Pj) – ACC [Pj]}
• Debit: Partition → Q+ is the debit function.

debit(Pj), Pj Partition gives the debit assigned to
the partition Pj. It can be calculated as follows:

Debit [Pj] = Max{0, ACC [Pj] – SB (Pj)} □

 Our objective is to minimize workflow makespan while
still satisfying the budget constraint. We formally define our
objective function and constraints as follows:

Definition 2.6 (Workflow Makespan Minimization WM):
Given a workflow W in a cloud environment C, and budget
B, a workflow makespan minimization represents the
objective function to minimize makespan under the given
budget constraint.

WM =

where,

such that the following constraints are satisfied:

 <= B
 = 1 for all the tasks in partition j assigned to a

resource Ri R.
There can be cases as follows:
1) if B < , then we cannot satisfy the budget
constraint and hence we assign all the partitions to the
cheapest resource.
2) if B > , then we can satisfy the budget
constraint and hence we assign all the partitions to the most
expensive resource.
3) if <= B <= , then we
use our strategy to find the optimal solution. □

III. THE BARENTS SCHEDULER

A. BARENTS Overview
Our BARENTS scheduler parses the specification of the

workflow and generates a weighted directed acyclic graph
with each node representing the tasks and each edge
representing the data dependency between the tasks in the
workflow. We estimate the number of instructions that
exists in each task and the size of the data dependencies that
exists between each task for all the workflows in our
repository. In addition, we also estimate the number of
instructions that can be executed per unit time and the size
of the data that can be transferred per unit time for different
cloud resource types. The estimates are adjusted
automatically during every workflow run to achieve
accuracy. The weight of the nodes and the edges in the
graph are calculated by using the average computation cost
and average data movement cost, respectively based on our
estimation. We partition the workflow into different
partitions in a topological manner. We validate that the tasks
in each partition do not have any data dependency between
them and at the same time there is at least one or more data
dependency between the tasks in different partitions. After
creating the partitions, we assign an initial sub-budget to
each partition based on the user defined budget dollar
amount provided for the workflow. Our Cloud Resource
Manager (CRM) [13, 14] is used to manage the cloud
resources by maintaining a catalogue that provides a list of
resource types and their associated cost incurred for an
hourly rate. We compute the minimum completion cost for
each partition, which is the cost incurred for executing all
the tasks in a partition. This cost includes both the
computation and movement of all the data dependencies
using the cheapest resource provided in the catalogue. We
compute the maximum completion cost for each partition,
which is the cost incurred for executing all the tasks in a
partition. This cost includes both the computation and

2779

movement of all the data dependencies using the most
expensive resource provided in the catalogue.

In addition, we compute a threshold value for each
partition that is used as a triggering factor by exploiting the
dependency between the partitions. The threshold value for
each partition provides more processing power for executing
the tasks in each partition by borrowing some budget from
the next subsequent partition. By doing so, we are able to
schedule the tasks in each partition to the most expensive
resource listed in the catalogue within the range of the
combined sub-budget and threshold value assigned to the
partition and thereby minimizing the makespan of the
partition. After identifying the appropriate resource type,
each task in the partition is scheduled to execute in a
different set of resources that are of the same resource type.
The actual completion cost for each partition is calculated
and we compute the credit or debit value based on the actual
completion cost and the initial sub-budget provided to the

partition. We adjust the sub-budget of the next partition by
using the credit or debit value that was calculated for the
current partition. The recalculation and adjustment of the
sub-budget is done for every partition in the workflow
except for the last partition. Because the last partition does
not have any subsequent partition to borrow the budget
from, the threshold value, the credit value and the debit
value is set to be 0 for the last partition. We present the
flowchart of our BARENTS scheduler in Figure 3.1.

B. The BARENTS Algorithm
In Table 3.1 a, we show the resource catalogue

maintained by the CRM. For example, we show the 5
resource types with the corresponding number of
instructions (in million lines of code) executed per minute,
the data movement size (in mega bytes) per minute and the
cost in dollar amount associated with the provisioning of the
resource per hour. In Figure 3.2, we show an example
workflow that consists of seven tasks and ten data
dependencies. First, the BARENTS scheduler parses the
specification of the workflow and generates the weighted
DAG shown in Table 3.1 b, c. Second, the workflow is
partitioned in a topological manner with: P1={T1, D1,2, D1,3,
D1,4, D1,5, D1,6}, P2={T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and
P3={T7}. Next, as presented in Table 3.1 d, we calculate the
initial sub-budget, the minimum completion cost, the
maximum completion cost and the threshold value for each
partition of the workflow. We compute the resource type for
partition 1 by finding the most expensive resource, that is
“t2.large”, with a debit of $0.3628 and credit of $0.0. We
update the sub-budget of partition 2. We compute the
resource type for partition 2 by finding the most expensive
resource, that is “t2.small”, with a debit of 0.0$ and credit of
$0.9615. We update the sub-budget of partition 3. We
compute the resource type for partition 3 by finding the
most expensive resource, which is “t2.nano”, with a debit of
$0.0 and credit of $0.8257. Thereby, we minimized the
workflow makespan to 9099 minutes.

Figure 3.2 An example Workflow w

Table 3.1 a) Cloud resource catalogue, b) Task computation cost c) Data
communication cost, d) Initial budget allocation and e) Final budget

Figure 3.1 The BARENTS flowchart

2780

We present the pseudo code of our BARENTS scheduler
in Algorithm 1. The inputs of the algorithm are the
specification of the workflow and a user defined budget
dollar amount. The output of the algorithm is the map that
consists of all the tasks and the corresponding resources
where the tasks are scheduled to execute. In line 4, we parse
the specification of the input workflow w and generate a
weighted DAG. In line 5, we partition the workflow
topologically and generate different partitions. In line 6, we
calculate the total completion cost by adding the average
completion cost of all the tasks in the workflow w. In lines
7-27, we loop through each partition in the workflow w to
identify the appropriate resource for each task in the
partition. In line 8, we calculate the sub-budget for the
current partition. In lines 9-11, we calculate the sub-budget
for the second partition. In lines 12-21, we validate if the
current partition is not the last one in the workflow. In line
13, we calculate the maximum completion cost for the next
subsequent partition. In line 14, we calculate the threshold
for the current partition. In line 15, we calculate the most
expensive resource type by calling the partition resource
type (PRT) function. In line 16, we assign all the tasks in the
partition to different resources of the resource type

computed in line 15. The schedule is then added to the
output schedule map. In line 17, we compute the actual
completion cost for executing all the tasks using the
resources assigned to them. In line 18, we calculate the debit
value and in line 20 we calculate the credit value. In lines 19
and 21, we recalculate the sub-budget and make the
necessary adjustment based on the credit or debit value. In
lines 22-25, we validate whether the current partition is the
last partition of the workflow. In line 23, we calculate the
sub-budget of the last partition by subtracting the sum of the
actual costs of all the previous partitions from the given
budget B. In line 24, we calculate the most expensive
resource type by calling the partition resource type (PRT)
function. In line 25, we assign all the tasks in the last
partition to different resources of the resource type
computed in line 24. The schedule is then added to the
output schedule map. Finally, in line 28, we output the final
schedule that consists of all the tasks and the corresponding
resources where the tasks are scheduled to execute and exit
the code.

IV. EXPERIMENTAL DISCUSSION

A. Performance Evaluation
 In our DATAVIEW system, we implemented a big data
workflow that is from automotive domain. We evaluated the
BARENTS scheduler using the OpenXC Autoanalytics
workflow [14]. OpenXC is an open source platform that
produces 19 signal oriented data trace files from the vehicle
automatically at periodic intervals. As mentioned in [13,
14], there is an exponential growth in the data size as the
number of miles a vehicle is driven increases with the time
for each driver. On average, every year the growth of the
data exceeds 14 Eb. OpenXC data analysis is extremely
useful for the automotive insurance companies to analyze
the driving behavior of their customers by analyzing the
large datasets generated from their registered vehicles. Since
the analytics is performed using the cloud resources, there is
a cost associated based on the computation and data
intensity of the tasks in the analytics workflow. There is
often a need to minimize the execution time that is taken to
perform the analytics based on the budget provided for the
analytics by the user. The BARENTS scheduler
automatically learns the complexity of the tasks
computation and the data transfer between the tasks from an
initial estimate. During every workflow run, the accuracy of
the complexity level estimates is improved by automatic
adjustment of the actual execution measurements.
 We performed our experiments in the Amazon EC2 cloud
computing environment, which provides a framework to
provision and deprovision virtual machines (instances) that
are of heterogeneous instance types. The Amazon EC2
cloud environment offers a total of 39 different instance
types that are of varied CPU, memory, storage and
networking capacity. Each type of instances consists of an
hourly cost for resource utilization and the execution time is

Algorithm 1 BARENTS Scheduler
2: input: workflow w, budget B
3: output: d, a map storing task-VM assignments.
4: parse w and generate a weighted DAG (w).
5: tasksByPartition ← partition workflow topologically.
6: TCC =
7: for each partition Pj tasksByPartition
8: SB [] = / TCC * B
9: if (Pj is first partition) then
10: SB [] = / TCC * B
11: end if
12: if (Pj is not last partition) then
13: maxCC [] =
14: Thres [] = Max {0, SB [] – maxCC []}
15: RT [Pj] = PRT (Pj , R, SB [] + Thres [])
16: d ← d MAP (Tk, RT []))
17: ACC [] =
18: DEBIT [] = Max{0, ACC [] – SB []}
19: SB [] = SB [] – DEBIT []
20: CREDIT [] = Max{0, SB[– ACC []}
21: SB [] = SB [] + CREDIT []
22: else if (Pj is last partition) then
23: SB [] = B -
24: RT [] = PRT (P, R, SB [])
25: d ← d MAP (Tk, RT []))
26: end if
27: end for
28: return d
29: end function

2781

based on the complexity level of the analytics workload. For
example, the instance types in the general purpose T2
category are listed as: {"t2.nano", “t2.micro", "t2.small",
"t2.medium", "t2.large"}. The performance of the analytics
using the resources of type "t2.nano" for a given workload
is the slowest and the cheapest option in terms of cost. On
the other hand, for the same workload the performance
using the resources of type "t2.large" is the fastest and the
most expensive option in terms of cost.
 We used two approaches to evaluate the strength of our
BARENTS algorithm. The first one is the Workflow
Responsive Resource Provisioning and Scheduling (WRPS)
[8] algorithm that assigns sub deadline to each bag of tasks
and schedules them on to a heterogeneous type of cloud
resources. In WRPS, the authors model the problem as an
unbounded knapsack minimization problem. The WRPS
algorithm is the most noted recent work in the field of
workflow scheduling. One limitation of WRPS is that the
workflow schedule is generated under a simulated workflow
execution environment. In addition, the workflow tasks are
assumed to be homogeneous, whereas in reality tasks in a
workflow are heterogeneous [13] with different types of
tasks that consist of the component code such as the
command line application, the web service based
application, etc. Hence, WRPS does not consider any
optimization strategies for heterogeneous tasks in a
workflow. In contrast, using our approach, we model the
execution time and execution cost of each heterogeneous
task in a workflow by considering both the complexity of
the computation in the task, as well as the outgoing data
dependencies for each task which are combined for each
partition in the workflow. However, we are still interested in
comparing BARENTS to WRPS, when both are using
homogeneous workflow tasks in each partition as a bag of
tasks. In order to make our comparison realistic, we
implemented a slight variation to the original WRPS
algorithm by implementing the algorithm with an objective
to minimize the makespan under a user driven budget
constraint.

The second approach is a slight variation of our
BARENTS algorithm called BARENTS*, in which we
relaxed the dependencies between the partitions by setting
the threshold, the credit and the debit to be 0. The WRPS
algorithm provides an optimization to the bag of tasks by
scheduling the tasks in a bag to different types of machines.
In contrast to WRPS, BARENTS assigns all the tasks inside
a given partition to the same type of machine. By performing
this comparison, we are able to validate how the partition
dependencies and run time sub-budget adjustment proposed
in BARENTS is used as a distinguishing feature to
outperform WRPS.

B. Results and Analysis
 BARENTS was evaluated using 10 distinctive workflows
developed in the OpenXC domain with different levels of
complexity and with different dollar amounts provided as
budget. In Table 4.1, we presented all the 10 workflows

with their complexity levels such as the computation and
data intensity of all the tasks in each of the workflow and
the user defined budget. We did the experiments by varying
the types of machines (the K value) and presented the
measurements from both the cost and makespan
perspectives. In Figure 4.b, we show that BARENTS
outperforms WRPS by roughly 6-10% margin as the
complexity of the workflow increases from w3 to w10. For
workflows between w1 and w3, which is of least
complexity, WRPS outperforms BARENTS. The reason for
this behavior is that WRPS schedules tasks in each bag to
the resources of different machine types. The local
optimization done at each partition outperforms the global
optimization performed by BARENTS when the complexity
level is low. We evaluated the behavior of all three
approaches and have demonstrated the makespan
minimization by varying the number of instance types for K
= {5, 10, 15, 20, 25}. In order to vary the K values for same
set of workflows with the same set of budgets, we created a
bigger range with a larger difference between the instance
types and then added new instance types within that range.
Figure 4.a illustrates resource utilization in the cloud for
different settings of K. The BARENTS algorithm
outperforms WRPS because resources are utilized to the
maximum extent for the tasks in each partition. Optimal
resource utilization is achieved because BARENTS sets up
partition dependency based on a system driven threshold
and automatically adjusts the sub-budget at run time with a
system driven credit or debit value, that is calculated from
the actual completion cost of the previous partition. As K
increases, there is a consistent improvement in makespan
minimization and resource utilization.

V. RELATED WORK
While the cloud computing paradigm [17,18,19] provides

a promising platform for running big data workflows,
performance tuning of workflow execution in the cloud
remains an important and challenging problem. One
challenge is the selection of cloud resources. Given a
workflow w, how many virtual machines are needed to run
w in the cloud? What types of virtual machines are needed?
As a cloud typically provides a set of heterogeneous virtual
machine types that come with different configurations and
prices, the selection of such cloud resources often need to

Table 4.1. Workload details for OpenXC workflows

2782

consider the characteristics of input datasets and workflows,
and the QoS parameters provided by a user such as budget
and deadline. Over the past decade, there have been several

workflow scheduling algorithms [1,8,20,21,22,23,24,25]
proposed that play a crucial role in running workflows
efficiently on the cloud. The scheduling algorithms are

Figure 4. a) Resource utilization; b) Makespan minimization

2783

widely categorized into static and dynamic algorithms. The
existing static algorithms [1,2,3,4] do not consider the
runtime estimation and hence are not very efficient in a
heterogeneous cloud computing environment, where there is
a cost and time for the computation performed in different
resource types and a cost and time for the data movement
from one resource to another. On the other hand, many
existing dynamic algorithms [5,6,7,8,10,11,12] are capable
of adapting to the unexpected delays that occur while
executing the workflow in the cloud. The existing
scheduling algorithms are either user driven with the QoS
constraints set by the user or system driven with no
constraints. There are two types of QoS constraints
primarily proposed so far in the existing algorithms: 1)
budget constraint [20,21,22,23,24,25], 2) deadline constraint
[1,8,22,25]. Budget-constrained workflow scheduling
algorithms aim to minimize the total execution time of a
workflow while meeting a user specified budget constraint.
Deadline-constrained workflow scheduling algorithms aim
to minimize the total monetary cost of running a workflow
while meeting a user specified deadline. There are some
algorithms that belong to both categories [22, 25] as they
aim to satisfy both the budget and deadline constraints, and
hence are used for each category by relaxing one of the
constraints. There are some algorithms that are solely based
on system driven optimization such as [7], which does not
consider any constraints. The goal of those algorithms is to
generate the schedule with a single objective, which is to
minimize the makespan.

There have been several existing works in dynamic
workflow scheduling algorithms. Malawski et al. [5],
propose Dynamic Provisioning Dynamic Scheduling
(DPDS) algorithm. The authors propose to schedule the
workflow ensembles on the cloud by maximizing the
execution of the total number of user-prioritized workflows
under a user provided QoS constraints such as budget and
deadline. Zhou et al. [6] develop a probabilistic scheduling
framework called Dyna that minimizes the execution cost
under deadline constraint by considering the dynamic nature
of the cloud computing such as performance and amazon
spot instances pricing. Lin et al. [7] propose the SCPOR
scheduling algorithm to dynamically schedule a workflow
in heterogeneous cloud environment. The SCPOR algorithm
prepares the workflow schedule with the goal of minimizing
the makespan by dynamically provisioning and
deprovisioning resources of several types with no
constraints. Rodriguez et al. [8] propose an adaptive,
resource provisioning and scheduling algorithm called
WRPS to generate the workflow schedule in a
heterogeneous cloud environment. The algorithm has a
single objective to minimize the execution cost of the
workflow under a user provided deadline constraint by
modeling the problem as an unbounded knapsack
minimization problem and is based on dynamic
programming. The major limitation of this approach is that

each partition is considered as an independent bag of tasks
and hence only local optimization is performed in each
partition of the workflow.

Furthermore, the WRPS algorithm fails to consider the
dependencies that exist between the partitions in a
workflow, which is a salient feature of the data centric
workflows [13, 14]. Another limitation of the WRPS
algorithm is that the approach only works for a
homogeneous set of tasks in a bag of tasks. However, in
reality the data centric workflows consists of heterogeneous
tasks and the scheduling optimization is required to consider
it [9]. Our BARENTS scheduler is different from the WRPS
scheduling algorithm, because we consider the dependencies
that exist between the partitions in a workflow through a
system generated threshold, credit and debit values. Besides
creating initial budget allocation, our approach also
dynamically creates the sub-budget adjustment through the
runtime estimation. Other dynamic scheduling algorithms
[10,11,12] have also been proposed. However, these
algorithms have only been validated in a simulated
environment and not in a real big data workflow system.

VI. CONCLUSIONS AND FUTURE WORK
To schedule big data workflows in the cloud computing

environment, we formalize a model of the cloud computing
environment and a workflow graph model for the
environment. Based on the models, we propose a new Big
dAta woRkflow schEduler uNder budgeT conStraint known
as BARENTS that supports high-performance workflow
scheduling in a heterogeneous cloud computing
environment with a single objective to minimize the
workflow makespan under a provided budget constraint.
Our case study and experiments not only show the
competitive advantages of our proposed scheduler, but also
enables resources to scale elastically during workflow
execution. The proposed BARENTS scheduler is
implemented in a new release of DATAVIEW, one of the
most usable big data workflow systems in the community.

 We envision future work to proceed along the following
two directions. First, addressing the challenge of dynamic
scheduling of workflow tasks. Where and when should a
workflow task be executed? When should a new virtual
machine provisioned and deprovisioned? Such decision-
making is harder even for a pipeline workflow of n tasks
and m virtual machines (VM), since the number of task-to-
VM assignments is exponential. Second, addressing the
challenge of optimal data placement in the cloud and
leverage such a data placement mechanism by integrating it
with the scheduler in a holistic manner.

ACKNOWLEDGMENT
This work is supported by U.S. National Science

Foundation under ACI-1443069 and is based upon work
supported in part by the National Science Foundation under
Grant No. 0910812.

2784

REFERENCES
[1] S. Abrishami, et al., "Deadline-constrained workflow
scheduling algorithms for Infrastructure as a Service
Clouds." Future Generation Computer Systems (FGCS),
vol. 29, no. 1, pp. 158-169, 2013.
[2] Z. Wu, et al., “A revised discrete particle swarm
optimization for cloud workflow scheduling.” in Proc. Of
the International Conference Computational Intelligence and
Security (CIS), pp. 184-188, 2010.
[3] S. Yassa, et al., “Multi objective approach for energy-
aware workflow scheduling in cloud computing
environments.” The Scientific World Journal, 2013.
[4] R. Calheiros, et al., “Meeting deadlines of scientific
workflows in public clouds with tasks replication.” IEEE
Transaction Parallel and Distributed Systems, vol. 25, no. 7,
pp. 1787–1796, 2014.
[5] M. Malawski, et al., “Cost and deadline-constrained
provisioning for scientific workflow ensembles in IaaS
clouds.” in Proc. International Conference on High
Performance Computing, Networking, Storage and
Analysis, 2012.
[6] A. C. Zhou, et al., “Monetary cost optimizations for
hosting workflow-as-a-service in IaaS clouds.” IEEE
Transactions on Cloud Computing., vol. 4, no. 1, pp. 34-48,
2015.
[7] C. Lin, et al., “SCPOR: An elastic workflow scheduling
algorithm for services computing.” in Proc. of the
International Conference on Service Oriented Computing
and Applications (SOCA), pp. 1-8, 2011.
[8] M.A. Rodriguez, et al., “A responsive Knapsack-based
algorithm for resource provisioning and scheduling of
scientific workflows in clouds.” in 44th International
Conference on Parallel Processing, ICPP, pp.839-848, 2015.
[9] A. Mohan, et al., "Addressing the Shimming Problem in
Big Data Scientific Workflows." in Proc. of the 2014 IEEE
International Conference on Services Computing (SCC'14),
pp. 347-354, 2014.
[10] M. Xu, et al., “A multiple QoS constrained scheduling
strategy of multiple workflows for cloud computing.” in
Proc. International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pp. 629-634, 2009.
[11] T. T. Huu et al., “Virtual resources allocation for
workflow-based applications distribution on a cloud
infrastructure.” in Proc. International Conference Cluster,
Cloud Grid Computing (CCGrid), pp. 612-617, 2010.
[12] D. de Oliveira, et al., “A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in
clouds.” Journal of Grid Computing, vol.10, no. 3, pp. 521–
552, 2012.
[13] A. Kashlev, et al., "A System Architecture for Running
Big Data Workflows in the Cloud." in Proc. of the 2014
IEEE International Conference on Services Computing
(SCC'14), pp. 51-58, 2014.

[14] A. Mohan, et al., "A NoSQL Data Model for Scalable
Big Data Workflow Execution." in Proc. of the International
IEEE Congress on Big Data (BigData 2016), pp. 52-59,
2016.
[15] M. Ebrahimi, et al., "TPS: A task placement strategy
for big data workflows." Big Data (Big Data), 2015 IEEE
International Conference on. IEEE, pp. 523-530, 2015.
[16] M. Ebrahimi, et al., "BDAP: A Big Data Placement
Strategy for Cloud-Based Scientific Workflows." Big Data
Computing Service and Applications (BigDataService),
2015 IEEE First International Conference on. IEEE, pp.
105-114, 2015.
[17] P. Mell, et al., "The NIST definition of cloud
computing." Communications of the ACM, vol. 53, no. 6, p.
50, 2010.
[18] A. Lenk, et al., "What are you paying for? performance
benchmarking for infrastructure-as-a-service offerings."
Cloud Computing (CLOUD), 2011 IEEE International
Conference on. IEEE, pp. 484-491, 2011.
[19] A. Lenk, et al., "What's inside the Cloud? An
architectural map of the Cloud landscape." in Proc. of the
2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, pp. 23-31, 2009.
[20] H. Arabnejad, et al., "A budget constrained scheduling
algorithm for workflow applications." Journal of Grid
Computing, vol. 12, no. 4, pp. 665-679, 2014.
[21] R. Sakellariou, et al., "Scheduling workflows with
budget constraints." in Integrated research in GRID
computing, pp. 189-202. Springer US, 2007.
[22] W. Zheng, et al., "Budget-deadline constrained
workflow planning for admission control." Journal of Grid
Computing, vol. 11, no. 4, pp. 633-651, 2013.
[23] A. Hamid, et al., "Low-time complexity budget-
deadline constrained workflow scheduling on heterogeneous
resources." Future Generation Computer Systems (FGCS),
vol. 55, pp. 29-40, 2016.
[24] R. Prodan, et al., "Bi-criteria scheduling of scientific
grid workflows." IEEE Transactions on Automation Science
and Engineering, vol. 7, no. 2, pp. 364-376, 2010.
[25] J. Yu, et al., "Scheduling scientific workflow
applications with deadline and budget constraints using
genetic algorithms." Scientific Programming, vol. 14, no. 3-
4, pp. 217-230, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

