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Abstract— Big data is fast becoming a ubiquitous term in 
both academia and industry and there is a strong need 
for new data-centric workflow tools and techniques to 
process and analyze large-scale complex datasets that 
are growing exponentially. On the other hand, the 
unbound resource leasing capability foreseen in the 
cloud facilitates data scientists to wring actionable 
insights from the data in a time and cost efficient 
manner. In the data-centric workflow environment, 
scheduling data processing tasks onto appropriate 
resources are often driven by the constraints provided 
by the users. Enforcing a constraint while executing the 
workflow in the cloud adds a new optimization challenge 
on how to meet the objective while satisfying the given 
constraint. In this paper, we propose a new Big dAta 
woRkflow schEduler uNder budgeT conStraint known as 
BARENTS that supports high-performance workflow 
scheduling in a heterogeneous cloud computing 
environment with a single objective to minimize the 
workflow makespan under a provided budget 
constraint. Our case study and experiments show the 
competitive advantages of our proposed scheduler. The 
proposed BARENTS scheduler is implemented in a new 
release of DATAVIEW, one of the most usable big data 
workflow systems in the community. 
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I.  INTRODUCTION  
Big data workflows [13] have recently emerged as a data- 

centric workflow approach to analyze the data that is ever 
increasing in scale, complexity, and rate of acquisition. Data 
scientists develop workflows by modeling their complex 
scientific applications as a set of data processing tasks with a 
set of data dependencies between the tasks. Although this 
approach facilitates the execution of tasks in a distributed 
cloud computing environment [17,18,19], it also adds a 
research challenge of how and where to schedule the tasks in 
a distributed and heterogeneous cloud environment in a 
usable manner [14]. The decision of how and where to 
schedule the tasks in a workflow is driven by the Quality of 
Service (QoS) requirements defined by data scientists such 
as the budget or the deadline for the workflow execution. 
The goal of the scheduling problem is to minimize the total 
cost for executing the workflow or makespan (i.e. total 
execution time of the workflow), while still meeting the QoS 
requirement defined by data scientists.  

Cloud service providers such as Amazon EC2 offer a 
scalable infrastructure that allows an unlimited number of 
virtual machines that can be provisioned for an amount of 
time proportional to the cost for usage. There are different 
types of instances that range from less powerful to more 
powerful in terms of their CPU, memory, storage and 
networking capacity. The cost per machine usage is billed on 
an hourly rate with the cheapest resource offering the least 
performance to the most expensive resource offering the 
highest performance. The Amazon EC2 cloud service 
provider provides an easily accessible application 
programming interface through which the cloud resource 
manager of the big data workflow system can provision and 
deprovision resources. The primary responsibility of the 
workflow engine in a big data workflow system is to 
orchestrate the execution of the workflow by 1) identifying a 
type of cloud resource that is appropriate for each set of tasks 
in the workflow based on the QoS requirement; 2) 
provisioning and deprovisioning a set of resources that are of 
the identified resource types; 3) scheduling the tasks to the 
appropriate cloud resources and initiate the distributed 
execution process. The scheduling problem is non-trivial. In 
fact, it is a well known NP-complete problem [1]. 

In this paper, we propose a new Big dAta woRkflow 
schEduler uNder budgeT conStraint known as BARENTS 
that supports high-performance workflow scheduling in a 
heterogeneous cloud computing environment with a single 
objective to minimize the workflow makespan under a 
provided budget constraint. Our case study and experiments 
show the competitive advantages of our proposed scheduler. 
The proposed BARENTS scheduler is implemented in a new 
release of DATAVIEW, one of the most usable big data 
workflow systems in the community. 

The rest of the paper is organized as follows. Section II 
provides a background on our system model. Section III 
introduces our BARENTS scheduling algorithm with an 
overview and presents the pseudo code with an example. 
Section IV presents our experimental results. Finally, 
Sections V and VI present related work and conclusions. 

II. MODEL 
A cloud computing environment provides a framework 

for enabling ubiquitous, on-demand access to a shared pool 
of resources of heterogeneous types which can be 
provisioned and deprovisioned with a minimal management 
effort. The computation tasks and their data counterpart are 
moved to the resources in the cloud, in order to perform the 
actual execution of the tasks. Every individual resource is 
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associated with a predetermined cost, computing speed 
function and data communication rate function. More 
formally a cloud computing environment is defined as: 

 
Definition 2.1 (Cloud Computing Environment C): A 
cloud computing environment is a 6-tuple C(R, RT, RC, FB, 
FR, RS), where 

• R is a set of resources. Each individual resource is 
denoted by  in the cloud computing environment. 

• RT is a set of resource types such as {"t2.nano”, 
“t2.micro”, “t2.small”, “t2.medium, “t2.large”, 
…}. 

• RC: R→ Q+ is the resource usage cost function. 
RC(Ri), Ri ∈ R gives the cost in some dollar 
amount for the resource usage Ri in the cloud 
computing environment. The resource with the 
minimum RC is called Rcheapest and the resource 
with the maximum RC is called Rexpensive. 

• FB: R × R → Q+
0 is the data communication rate 

function. FB(Ri1, Ri2), Ri1, Ri2  ∈ R gives the data 
communication rate between Ri1 and Ri2. Q+

0 is 
some pre-determined unit like bytes per second. 

• FR: R → Q+ is the resource computing speed 
function. FR(Ri), Ri ∈ R gives the speed for the 
computing resource Ri, measured in some pre-
determined unit like million instructions per 
machine cycles or million instructions per 
nanoseconds.  

• FS: RT → R is the resource provisioning function. 
FS(Rt), Rt ∈ RT returns a resource instance of the 
resource type of Rt. □ 

    A big data workflow is the computerized modeling and 
automation of a process consisting of a set of computational 
tasks and their data interdependencies to process and 
analyze a large amount of data. The big data workflow 
consists of a set of interconnected tasks and their data 
counterparts. Because one or more of the input datasets 
connected to the tasks fall under the umbrella of big data, 
there is a need for a distributed computing environment such 
as the cloud to process the tasks in an efficient manner. 
More formally, a big data workflow is defined as: 
 
Definition 2.2 (Big Data Workflow W): A big data 
workflow can be formally defined as a 4-tuple W = (T, D, 
FT, FD), where 

• T is a set of tasks in the workflow W. Each 
individual task is denoted by Tk. 

• D = {<Tk1, Tk2> | Tk1, Tk2 ∈ T, k1 ≠ k2; k1,k2 ≤ |T|, 
Tk2 consumes data Dk1, k2  produced by Tk1} is a set 
of data dependencies. Dk1,k2 represents an amount 
of data  required to be transferred after Tk1 
completes and before Tk2 starts. Dk represents all 
the output datasets from task Tk. 

• FT: T→ Q+
0 is the execution cost function. FT (Tk); 

Tk ∈ T gives the execution cost of a task Tk, 
measured in some pre-determined unit like million 
instructions per machine cycles or million 
instructions per nanoseconds. 

• FD: D → Q+
0 is the data size function. FD (Dk1,k2), 

Dk1,k2 ∈ D gives the size of a dataset Dk1,k2, 
measured in some predetermined unit like bits or 
bytes. □ 

 
    A big data workflow graph is a weighted directed acyclic 
graph that includes a set of vertices a.k.a. tasks and a set of 
edges a.k.a. data dependencies, which represent the output 
datasets that originate from one task and passed as an input 
to another task in the workflow. We divide the workflow 
graph into several partitions a.k.a. levels. Each partition in 
the workflow graph has a set of vertices and a set of 
outgoing edges that represent the data passed as input to the 
next partition. The weight of the vertices is calculated by the 
average task computation cost function and the weight of 
the edges is calculated by the average data communication 
cost function. More formally, a big data workflow graph is 
defined as: 
 
Definition 2.3 (Big Data Workflow Graph G): Given a 
workflow W in a cloud environment C, a big data workflow 
graph G, represents a weighted directed acyclic graph with 
14-tuple G(T, D, R, , , , , , , , , P, TP, 
RT), where 

• the vertices of the graph represent a set of tasks T. 
• the edges of the graph represent a set of data 

dependencies D. 
• R is a set of resources in the cloud environment. 
• Fc: D×R×R → Q+

0 is the data communication cost 
function. Fc (Dk1,k2,  Ri1, Ri2), Dk1,k2  D, Ri1, Ri2  
R gives the data communication cost of Dk1,k2  from 
resource Ri1 to resource Ri2. 

• : D →Q+
0 is the average data communication 

cost function.  (Dk1,k2), Dk1,k2  D gives the 
average data communication cost of Dk1,k2 for all 
the resources R, which is taken as the weight of 
edge in the graph G. The weight of the edge is 0 for 
the same resource. 

• Fp: T×R → Q+ is the task computation cost 
function. Fp(Tk, Ri), Tk  T, Ri  R gives the 
computation cost of Tk on resource Ri. 

• : T → Q+ is the average task computation cost 
function,  (Tk) gives the average computation 
cost of task Tk, which is taken as the weight of 
vertex in the graph G.  

• Fm: D×R×R → Q+
0 is the data communication time 

function. Fm (Dk1,k2,  Ri1, Ri2), Dk1,k2  D; Ri1, Ri2  
R gives the data communication time of Dk1,k2  
from resource Ri1 to resource Ri2. 
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• : D → Q+
0 is the average data communication 

time function.  (k1, k2), Dk1,k2  D gives the 
average data communication time of Dk1,k2 for all 
the resources R.  

• Fn: T×R → Q+ is the task computation time 
function. Fn(Tk, Ri), Tk T, Ri R gives the 
computation time of Tk on resource Ri. 

• : T → Q+ is the average task computation time 
function,  (Tk) gives the average computation 
time of task Tk.  

• P: N → T is the partition task function, P[j] or Pj 
gives all the tasks of partition j. RPj represents the 
set of resources assigned to the tasks in partition Pj. 

• TP: T → N is the task partition function, TP [Tk] or 
TPTk  gives the partition number of task Tk. 

• RT: P → RT is the partition resource type function. 
RT[Pj] gives the resource type that is assigned to 
partition Pj. □ 

 
   While executing a workflow on a set of resources in the 
cloud, there is a cost and time incurred during the execution 
process. Makespan is the total time taken to complete the 
workflow execution. Each resource in the cloud has a type 
associated with it. In addition, there is also a cost associated 
with each type of resource per unit time. The execution of 
the workflow on a cheapest resource take more time than 
executing the workflow on an expensive resource. Because 
there is a tradeoff between performance of the workflow 
execution and the cost associated with the workflow 
execution, we compute the cost associated with the 
workflow execution at different level of granularity such as 
the minimum, the average and the maximum completion 
cost. In order to achieve our objective of minimizing the 
makespan, we calculate the time taken to complete the 
execution of each partition in the workflow. More formally, 
we define the workflow execution environment as: 
 
Definition 2.4 (Workflow Execution Environment WE): 
Given a workflow W in a cloud environment C, a workflow 
execution environment, represents the cost and time 
incurred during the execution of the workflow with 5-tuple 
WE (CC, , CT, minCC, maxCC), where 

• CC: Partition  R → Q+
0 is the workflow partition 

completion cost function. CC( Pj , Ri), Pj  ∈  
Partition gives the sum of task computation cost of 
all the tasks Tk ∈ Pj assigned to Ri as well as the 
data communication cost for all the outgoing edges 
from all the tasks Tk ∈ Pj. We formally define as: 

CC (Pj , Ri1) = + 
 

• : Partition → Q+
0 is the average workflow 

partition completion cost function. (Pj), Pj ∈ 
Partition gives the sum of average task 
computation cost of all the tasks Tk  Pj and the 

average data communication for all the outgoing 
edges from all the tasks Tk  ∈ Pj. We formally 
define as: 

(Pj) =  (Tk) +   (k, k1) 

• CT: Partition → Q+
0 is the workflow partition 

completion time function. CT(Pj), Pj ∈ Partition 
gives the maximum of average task computation 
time of all the tasks Tk ∈ Pj and the maximum of 
average data communication time of all the 
outgoing edges from all the tasks Tk ∈ Pj. We 
formally define as: 

CT (Pj) = {  (Tk)} +   
(Dk, k1)} 

• minCC: Partition → Q+
0 is the minimum workflow 

partition completion cost function. minCC(Pj), Pj ∈ 
Partition gives the sum of minimum task 
computation cost of all the tasks Tk ∈ Pj and the 
minimum data communication for all the outgoing 
edges from all the tasks Tk ∈ Pj. We formally 
define minCC as: 

minCC  =         
• maxCC: Partition → Q+

0 is the maximum 
workflow partition completion cost function. 
maxCC (Pj), Pj ∈ Partition gives the sum of 
maximum task computation cost of all the tasks Tk 
∈ Pj and the maximum data communication for all 
the outgoing edges from all the tasks Tk ∈ Pj. We 
formally define maxCC as: 

maxCC ( ) =   □ 
    At workflow run time, a user driven budget is allocated as 
a dollar amount for the entire workflow. We compute the 
sub-budget as a dollar amount for each partition in the 
workflow based on the user provided budget. The sub-
budget is computed based on the average completion cost 
for each partition. The partition with the high computation 
intensive tasks and high data intensive outgoing edges has 
more sub-budget than the partition with the low 
computation intensive tasks and the low data intensive 
outgoing edges. In addition to the sub-budget, there is also a 
threshold provided to each partition as a dollar amount. The 
threshold for a partition is computed based on the sub-
budget allocated to the next subsequent partition and the 
completion cost incurred for executing the partition by using 
the most expensive resource provided by the maximum 
completion cost. The threshold is set to be always greater 
than or equal to zero. The partition resource type (PRT) 
function identifies the most expensive resource type for 
each partition in a workflow while still meeting the budget 
constraint. The goal of PRT function is to minimize the 
completion time of the tasks in each partition. We minimize 
the workflow makespan by applying PRT for each partition 
in the workflow.  
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Definition 2.5 (Workflow Partition Cost PC): Given a 
workflow W in a cloud computing environment C and a 
budget B, a workflow partition cost represents the budget 
allocated to each partition of the workflow and the actual 
cost incurred at each partition of the workflow with 6-tuple 
PC(SB, Threshold, PRT, ACC, Credit, Debit), where 

• SB: Partition → Q+ is the sub-budget function. 
SB(Pj), Pj ∈ Partition gives the sub-budget 
assigned to the partition Pj and can be calculated 
formally as follows:   

SB (Pj) = [ (Pj) / ] * B 
• Threshold: Partition→ Q+ is the threshold function. 

Threshold(Pj), Pj Partition gives the threshold 
assigned to the partition Pj. It can be calculated as 
follows:  

Threshold (Pj) = Max {0, SB (Pj +1)  
– maxCC (Pj +1)} 

• PRT: Partition  R SB  Threshold → RT is the 
partition resource type function that is used to 
identify the most expensive resource type for each 
partition. PRT is based on the criteria that the total 
completion cost for all the tasks in the partition is 
less than equal to the sum of the sub-budget and 
the threshold assigned to the partition.  

• ACC: Partition → Q+ is the actual completion cost 
that is used to compute the total cost for 
completing all the tasks in a partition, that are 
assigned to the resources of a particular resource 
type. Supposedly, all the tasks in partition j are 
assigned to RT[j] then ACC can be formally 
calculated as: 

ACC [Pj] =  
• Credit: Partition → Q+ is the credit function.  

Credit(Pj), Pj ∈ Partition gives the credit assigned 
to the partition Pj. It can be calculated as follows:  

Credit [Pj] = Max{0, SB (Pj) – ACC [Pj]} 
• Debit: Partition → Q+ is the debit function.  

debit(Pj), Pj Partition gives the debit assigned to 
the partition Pj. It can be calculated as follows: 

Debit [Pj] = Max{0, ACC [Pj] – SB (Pj)} □ 
 

    Our objective is to minimize workflow makespan while 
still satisfying the budget constraint. We formally define our 
objective function and constraints as follows: 
 
Definition 2.6 (Workflow Makespan  Minimization WM): 
Given a workflow W in a cloud environment C, and budget 
B, a workflow makespan minimization represents the 
objective function to minimize makespan under the given 
budget constraint. 

WM =    
 
where,  

 

 
such that the following constraints are satisfied: 

   <= B 
 = 1 for all the tasks in partition j assigned to a 

resource Ri R.   
There can be cases as follows: 
1) if B < , then we cannot satisfy the budget 
constraint and hence we assign all the partitions to the 
cheapest resource.  
2) if B > , then we can satisfy the budget 
constraint and hence we assign all the partitions to the most 
expensive resource.   
3) if   <= B <= , then we 
use our strategy to find the optimal solution. □ 

III. THE BARENTS SCHEDULER 

A. BARENTS Overview 
Our BARENTS scheduler parses the specification of the 

workflow and generates a weighted directed acyclic graph 
with each node representing the tasks and each edge 
representing the data dependency between the tasks in the 
workflow. We estimate the number of instructions that 
exists in each task and the size of the data dependencies that 
exists between each task for all the workflows in our 
repository. In addition, we also estimate the number of 
instructions that can be executed per unit time and the size 
of the data that can be transferred per unit time for different 
cloud resource types. The estimates are adjusted 
automatically during every workflow run to achieve 
accuracy. The weight of the nodes and the edges in the 
graph are calculated by using the average computation cost 
and average data movement cost, respectively based on our 
estimation. We partition the workflow into different 
partitions in a topological manner. We validate that the tasks 
in each partition do not have any data dependency between 
them and at the same time there is at least one or more data 
dependency between the tasks in different partitions. After 
creating the partitions, we assign an initial sub-budget to 
each partition based on the user defined budget dollar 
amount provided for the workflow. Our Cloud Resource 
Manager (CRM) [13, 14] is used to manage the cloud 
resources by maintaining a catalogue that provides a list of 
resource types and their associated cost incurred for an 
hourly rate. We compute the minimum completion cost for 
each partition, which is the cost incurred for executing all 
the tasks in a partition. This cost includes both the 
computation and movement of all the data dependencies 
using the cheapest resource provided in the catalogue. We 
compute the maximum completion cost for each partition, 
which is the cost incurred for executing all the tasks in a 
partition. This cost includes both the computation and 
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movement of all the data dependencies using the most 
expensive resource provided in the catalogue.  

In addition, we compute a threshold value for each 
partition that is used as a triggering factor by exploiting the 
dependency between the partitions. The threshold value for 
each partition provides more processing power for executing 
the tasks in each partition by borrowing some budget from 
the next subsequent partition. By doing so, we are able to 
schedule the tasks in each partition to the most expensive 
resource listed in the catalogue within the range of the 
combined sub-budget and threshold value assigned to the 
partition and thereby minimizing the makespan of the 
partition. After identifying the appropriate resource type, 
each task in the partition is scheduled to execute in a 
different set of resources that are of the same resource type. 
The actual completion cost for each partition is calculated 
and we compute the credit or debit value based on the actual 
completion cost and the initial sub-budget provided to the 

partition. We adjust the sub-budget of the next partition by 
using the credit or debit value that was calculated for the 
current partition. The recalculation and adjustment of the 
sub-budget is done for every partition in the workflow 
except for the last partition. Because the last partition does 
not have any subsequent partition to borrow the budget 
from, the threshold value, the credit value and the debit 
value is set to be 0 for the last partition. We present the 
flowchart of our BARENTS scheduler in Figure 3.1. 

B. The BARENTS Algorithm 
In Table 3.1 a, we show the resource catalogue 

maintained by the CRM. For example, we show the 5 
resource types with the corresponding number of 
instructions (in million lines of code) executed per minute, 
the data movement size (in mega bytes) per minute and the 
cost in dollar amount associated with the provisioning of the 
resource per hour. In Figure 3.2, we show an example 
workflow that consists of seven tasks and ten data 
dependencies. First, the BARENTS scheduler parses the 
specification of the workflow and generates the weighted 
DAG shown in Table 3.1 b, c. Second, the workflow is 
partitioned in a topological manner with: P1={T1, D1,2, D1,3, 
D1,4, D1,5, D1,6}, P2={T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and 
P3={T7}. Next, as presented in Table 3.1 d, we calculate the 
initial sub-budget, the minimum completion cost, the 
maximum completion cost and the threshold value for each 
partition of the workflow. We compute the resource type for 
partition 1 by finding the most expensive resource, that is 
“t2.large”, with a debit of $0.3628 and credit of $0.0. We 
update the sub-budget of partition 2. We compute the 
resource type for partition 2 by finding the most expensive 
resource, that is “t2.small”, with a debit of 0.0$ and credit of 
$0.9615. We update the sub-budget of partition 3. We 
compute the resource type for partition 3 by finding the 
most expensive resource, which is “t2.nano”, with a debit of 
$0.0 and credit of $0.8257. Thereby, we minimized the 
workflow makespan to 9099 minutes.   

Figure 3.2 An example Workflow w 

Table 3.1 a) Cloud resource catalogue, b) Task computation cost c) Data 
communication cost, d) Initial budget allocation and e) Final budget 

Figure 3.1 The BARENTS flowchart 
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We present the pseudo code of our BARENTS scheduler 
in Algorithm 1. The inputs of the algorithm are the 
specification of the workflow and a user defined budget 
dollar amount. The output of the algorithm is the map that 
consists of all the tasks and the corresponding resources 
where the tasks are scheduled to execute. In line 4, we parse 
the specification of the input workflow w and generate a 
weighted DAG. In line 5, we partition the workflow 
topologically and generate different partitions.  In line 6, we 
calculate the total completion cost by adding the average 
completion cost of all the tasks in the workflow w. In lines 
7-27, we loop through each partition in the workflow w to 
identify the appropriate resource for each task in the 
partition. In line 8, we calculate the sub-budget for the 
current partition. In lines 9-11, we calculate the sub-budget 
for the second partition. In lines 12-21, we validate if the 
current partition is not the last one in the workflow. In line 
13, we calculate the maximum completion cost for the next 
subsequent partition. In line 14, we calculate the threshold 
for the current partition. In line 15, we calculate the most 
expensive resource type by calling the partition resource 
type (PRT) function. In line 16, we assign all the tasks in the 
partition to different resources of the resource type 

computed in line 15. The schedule is then added to the 
output schedule map. In line 17, we compute the actual 
completion cost for executing all the tasks using the 
resources assigned to them. In line 18, we calculate the debit 
value and in line 20 we calculate the credit value. In lines 19 
and 21, we recalculate the sub-budget and make the 
necessary adjustment based on the credit or debit value. In 
lines 22-25, we validate whether the current partition is the 
last partition of the workflow. In line 23, we calculate the 
sub-budget of the last partition by subtracting the sum of the 
actual costs of all the previous partitions from the given 
budget B. In line 24, we calculate the most expensive 
resource type by calling the partition resource type (PRT) 
function. In line 25, we assign all the tasks in the last 
partition to different resources of the resource type 
computed in line 24. The schedule is then added to the 
output schedule map. Finally, in line 28, we output the final 
schedule that consists of all the tasks and the corresponding 
resources where the tasks are scheduled to execute and exit 
the code. 

IV. EXPERIMENTAL DISCUSSION 

A. Performance Evaluation  
    In our DATAVIEW system, we implemented a big data 
workflow that is from automotive domain. We evaluated the 
BARENTS scheduler using the OpenXC Autoanalytics 
workflow [14]. OpenXC is an open source platform that 
produces 19 signal oriented data trace files from the vehicle 
automatically at periodic intervals. As mentioned in [13, 
14], there is an exponential growth in the data size as the 
number of miles a vehicle is driven increases with the time 
for each driver. On average, every year the growth of the 
data exceeds 14 Eb. OpenXC data analysis is extremely 
useful for the automotive insurance companies to analyze 
the driving behavior of their customers by analyzing the 
large datasets generated from their registered vehicles. Since 
the analytics is performed using the cloud resources, there is 
a cost associated based on the computation and data 
intensity of the tasks in the analytics workflow. There is 
often a need to minimize the execution time that is taken to 
perform the analytics based on the budget provided for the 
analytics by the user. The BARENTS scheduler 
automatically learns the complexity of the tasks 
computation and the data transfer between the tasks from an 
initial estimate. During every workflow run, the accuracy of 
the complexity level estimates is improved by automatic 
adjustment of the actual execution measurements. 
   We performed our experiments in the Amazon EC2 cloud 
computing environment, which provides a framework to 
provision and deprovision virtual machines (instances) that 
are of heterogeneous instance types. The Amazon EC2 
cloud environment offers a total of 39 different instance 
types that are of varied CPU, memory, storage and 
networking capacity. Each type of instances consists of an 
hourly cost for resource utilization and the execution time is 

Algorithm 1 BARENTS Scheduler 
2:  input: workflow w, budget B 
3:  output: d, a map storing task-VM assignments. 
4:  parse w and generate a weighted DAG (w). 
5:  tasksByPartition ← partition workflow topologically. 
6:  TCC =   
7:  for each partition Pj  tasksByPartition 
8:      SB [ ] = / TCC * B  
9:      if (Pj is first partition) then 
10:       SB [ ] = / TCC * B 
11:    end if 
12:    if (Pj is not last partition) then 
13:       maxCC [ ] =   
14:       Thres [ ] = Max {0, SB [ ] – maxCC [ ]} 
15:       RT [Pj] = PRT (Pj , R, SB [ ] + Thres [ ])  
16:       d ← d  MAP (Tk, RT [ ]))  
17:       ACC [ ] =  
18:       DEBIT  [ ] = Max{0, ACC [ ] – SB [ ]} 
19:       SB [ ] = SB [ ] – DEBIT [ ]  
20:       CREDIT [ ] = Max{0, SB[  – ACC [ ]} 
21:       SB [ ] = SB [ ] + CREDIT [ ] 
22:    else if (Pj is last partition) then 
23:       SB [ ] = B -  
24:       RT [ ] = PRT (P, R, SB [ ])  
25:       d ← d  MAP (Tk, RT [ ]))  
26:    end if   
27: end for  
28: return d  
29: end function
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based on the complexity level of the analytics workload. For 
example, the instance types in the general purpose T2 
category are listed as: {"t2.nano", “t2.micro",  "t2.small", 
"t2.medium", "t2.large"}. The performance of the analytics 
using the resources of type "t2.nano" for a given workload 
is the slowest and the cheapest option in terms of cost. On 
the other hand, for the same workload the performance 
using the resources of type "t2.large" is the fastest and the 
most expensive option in terms of cost.  
    We used two approaches to evaluate the strength of our 
BARENTS algorithm. The first one is the Workflow 
Responsive Resource Provisioning and Scheduling (WRPS) 
[8] algorithm that assigns sub deadline to each bag of tasks 
and schedules them on to a heterogeneous type of cloud 
resources. In WRPS, the authors model the problem as an 
unbounded knapsack minimization problem. The WRPS 
algorithm is the most noted recent work in the field of 
workflow scheduling. One limitation of WRPS is that the 
workflow schedule is generated under a simulated workflow 
execution environment. In addition, the workflow tasks are 
assumed to be homogeneous, whereas in reality tasks in a 
workflow are heterogeneous [13] with different types of 
tasks that consist of the component code such as the 
command line application, the web service based 
application, etc. Hence, WRPS does not consider any 
optimization strategies for heterogeneous tasks in a 
workflow. In contrast, using our approach, we model the 
execution time and execution cost of each heterogeneous 
task in a workflow by considering both the complexity of 
the computation in the task, as well as the outgoing data 
dependencies for each task which are combined for each 
partition in the workflow. However, we are still interested in 
comparing BARENTS to WRPS, when both are using 
homogeneous workflow tasks in each partition as a bag of 
tasks. In order to make our comparison realistic, we 
implemented a slight variation to the original WRPS 
algorithm by implementing the algorithm with an objective 
to minimize the makespan under a user driven budget 
constraint.  

The second approach is a slight variation of our 
BARENTS algorithm called BARENTS*, in which we 
relaxed the dependencies between the partitions by setting 
the threshold, the credit and the debit to be 0. The WRPS 
algorithm provides an optimization to the bag of tasks by 
scheduling the tasks in a bag to different types of machines. 
In contrast to WRPS, BARENTS assigns all the tasks inside 
a given partition to the same type of machine. By performing 
this comparison, we are able to validate how the partition 
dependencies and run time sub-budget adjustment proposed 
in BARENTS is used as a distinguishing feature to 
outperform WRPS. 

B. Results and Analysis 
   BARENTS was evaluated using 10 distinctive workflows 
developed in the OpenXC domain with different levels of 
complexity and with different dollar amounts provided as 
budget. In Table 4.1, we presented all the 10 workflows 

with their complexity levels such as the computation and 
data intensity of all the tasks in each of the workflow and 
the user defined budget. We did the experiments by varying 
the types of machines (the K value) and presented the 
measurements from both the cost and makespan 
perspectives. In Figure 4.b, we show that BARENTS 
outperforms WRPS by roughly 6-10% margin as the 
complexity of the workflow increases from w3 to w10. For 
workflows between w1 and w3, which is of least 
complexity, WRPS outperforms BARENTS. The reason for 
this behavior is that WRPS schedules tasks in each bag to 
the resources of different machine types. The local 
optimization done at each partition outperforms the global 
optimization performed by BARENTS when the complexity 
level is low. We evaluated the behavior of all three 
approaches and have demonstrated the makespan 
minimization by varying the number of instance types for K 
= {5, 10, 15, 20, 25}. In order to vary the K values for same 
set of workflows with the same set of budgets, we created a 
bigger range with a larger difference between the instance 
types and then added new instance types within that range. 
Figure 4.a illustrates resource utilization in the cloud for 
different settings of K. The BARENTS algorithm 
outperforms WRPS because resources are utilized to the 
maximum extent for the tasks in each partition. Optimal 
resource utilization is achieved because BARENTS sets up 
partition dependency based on a system driven threshold 
and automatically adjusts the sub-budget at run time with a 
system driven credit or debit value, that is calculated from 
the actual completion cost of the previous partition. As K 
increases, there is a consistent improvement in makespan 
minimization and resource utilization. 

V. RELATED WORK 
While the cloud computing paradigm [17,18,19] provides 

a promising platform for running big data workflows, 
performance tuning of workflow execution in the cloud 
remains an important and challenging problem. One 
challenge is the selection of cloud resources. Given a 
workflow w, how many virtual machines are needed to run 
w in the cloud? What types of virtual machines are needed? 
As a cloud typically provides a set of heterogeneous virtual 
machine types that come with different configurations and 
prices, the selection of such cloud resources often need to 

Table 4.1. Workload details for OpenXC workflows 
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consider the characteristics of input datasets and workflows, 
and the QoS parameters provided by a user such as budget 
and deadline. Over the past decade, there have been several 

workflow scheduling algorithms [1,8,20,21,22,23,24,25] 
proposed that play a crucial role in running workflows 
efficiently on the cloud. The scheduling algorithms are 

Figure 4. a) Resource utilization;  b) Makespan minimization 
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widely categorized into static and dynamic algorithms.  The 
existing static algorithms [1,2,3,4] do not consider the 
runtime estimation and hence are not very efficient in a 
heterogeneous cloud computing environment, where there is 
a cost and time for the computation performed in different 
resource types and a cost and time for the data movement 
from one resource to another. On the other hand, many 
existing dynamic algorithms [5,6,7,8,10,11,12] are capable 
of adapting to the unexpected delays that occur while 
executing the workflow in the cloud. The existing 
scheduling algorithms are either user driven with the QoS 
constraints set by the user or system driven with no 
constraints. There are two types of QoS constraints 
primarily proposed so far in the existing algorithms: 1) 
budget constraint [20,21,22,23,24,25], 2) deadline constraint 
[1,8,22,25]. Budget-constrained workflow scheduling 
algorithms aim to minimize the total execution time of a 
workflow while meeting a user specified budget constraint. 
Deadline-constrained workflow scheduling algorithms aim 
to minimize the total monetary cost of running a workflow 
while meeting a user specified deadline. There are some 
algorithms that belong to both categories [22, 25] as they 
aim to satisfy both the budget and deadline constraints, and 
hence are used for each category by relaxing one of the 
constraints. There are some algorithms that are solely based 
on system driven optimization such as [7], which does not 
consider any constraints. The goal of those algorithms is to 
generate the schedule with a single objective, which is to 
minimize the makespan. 
 

There have been several existing works in dynamic 
workflow scheduling algorithms. Malawski et al. [5], 
propose Dynamic Provisioning Dynamic Scheduling 
(DPDS) algorithm. The authors propose to schedule the 
workflow ensembles on the cloud by maximizing the 
execution of the total number of user-prioritized workflows 
under a user provided QoS constraints such as budget and 
deadline. Zhou et al. [6] develop a probabilistic scheduling 
framework called Dyna that minimizes the execution cost 
under deadline constraint by considering the dynamic nature 
of the cloud computing such as performance and amazon 
spot instances pricing. Lin et al. [7] propose the SCPOR 
scheduling algorithm to dynamically schedule a workflow 
in heterogeneous cloud environment. The SCPOR algorithm 
prepares the workflow schedule with the goal of minimizing 
the makespan by dynamically provisioning and 
deprovisioning resources of several types with no 
constraints. Rodriguez et al. [8] propose an adaptive, 
resource provisioning and scheduling algorithm called 
WRPS to generate the workflow schedule in a 
heterogeneous cloud environment. The algorithm has a 
single objective to minimize the execution cost of the 
workflow under a user provided deadline constraint by 
modeling the problem as an unbounded knapsack 
minimization problem and is based on dynamic 
programming. The major limitation of this approach is that 

each partition is considered as an independent bag of tasks 
and hence only local optimization is performed in each 
partition of the workflow.  

Furthermore, the WRPS algorithm fails to consider the 
dependencies that exist between the partitions in a 
workflow, which is a salient feature of the data centric 
workflows [13, 14]. Another limitation of the WRPS 
algorithm is that the approach only works for a 
homogeneous set of tasks in a bag of tasks. However, in 
reality the data centric workflows consists of heterogeneous 
tasks and the scheduling optimization is required to consider 
it [9]. Our BARENTS scheduler is different from the WRPS 
scheduling algorithm, because we consider the dependencies 
that exist between the partitions in a workflow through a 
system generated threshold, credit and debit values. Besides 
creating initial budget allocation, our approach also 
dynamically creates the sub-budget adjustment through the 
runtime estimation. Other dynamic scheduling algorithms 
[10,11,12] have also been proposed. However, these 
algorithms have only been validated in a simulated 
environment and not in a real big data workflow system.  

VI. CONCLUSIONS AND FUTURE WORK 
To schedule big data workflows in the cloud computing 

environment, we formalize a model of the cloud computing 
environment and a workflow graph model for the 
environment. Based on the models, we propose a new Big 
dAta woRkflow schEduler uNder budgeT conStraint known 
as BARENTS that supports high-performance workflow 
scheduling in a heterogeneous cloud computing 
environment with a single objective to minimize the 
workflow makespan under a provided budget constraint. 
Our case study and experiments not only show the 
competitive advantages of our proposed scheduler, but also 
enables resources to scale elastically during workflow 
execution. The proposed BARENTS scheduler is 
implemented in a new release of DATAVIEW, one of the 
most usable big data workflow systems in the community.  
 
    We envision future work to proceed along the following 
two directions. First, addressing the challenge of dynamic 
scheduling of workflow tasks. Where and when should a 
workflow task be executed? When should a new virtual 
machine provisioned and deprovisioned? Such decision-
making is harder even for a pipeline workflow of n tasks 
and m virtual machines (VM), since the number of task-to-
VM assignments is exponential. Second, addressing the 
challenge of optimal data placement in the cloud and 
leverage such a data placement mechanism by integrating it 
with the scheduler in a holistic manner. 
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