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Abstract—With the advent of cloud computing, an unbound 
number of compute resources can be leased from the cloud 
providers. In such an environment, the number of assigned 
resources to a workflow can be elastically scaled in and out on a 
demand basis using the added Quality of Service (QoS) constraints 
such as the budget and the deadline. The heterogeneous nature of 
the cloud resources makes the decision of selecting resource type 
for each workflow a challenging problem. Although there are 
several existing research studies that propose both static and 
dynamic scheduling algorithms for both homogeneous and 
heterogeneous cloud resource types, they do not take advantage of 
the data dependency information that is part of the workflow 
structure during the scheduling process. There is still room for 
improvement, since the scheduling problem is an NP-hard 
problem. In this paper we propose a new Big data wOrkflow 
scheduleR undeR deadlIne conStraint (BORRIS) that is used to 
minimize the execution cost of the workflow under a provided 
deadline constraint in a heterogeneous cloud computing 
environment. We have implemented the proposed algorithm in 
our big data workflow system called DATAVIEW and the 
experimental results show the competitive advantage of our 
approach. 

Keywords-big data workflows; big data; scheduling;BORRIS 

I. INTRODUCTION 

The current trend in the use of cloud-computing paradigms 
for big data querying and analytics has opened up a new set of 
challenges to the workflow-scheduling problem [7]. The cloud-
computing environment provides an easily accessible and 
scalable framework that guides the process of leasing an 
unbounded set of resources with heterogeneous types. The 
workflow engine that is mainly responsible for the orchestration 
of the execution of the workflow, will now need to make more 
intelligent decisions about when and where to execute the tasks 
in a workflow. The existing big data workflow engine [13, 14], 
has a limitation on the assignment of resources to a workflow 
at design time based on the structure of the workflow. Due to 
the nature of big data processing in those workflows, the tasks 
are compute and data intensive, and hence there is a strong need 
for scheduling those tasks in different types of machines in the 
cloud by making the necessary decisions at run time.   

The scheduling decision making process needs to be user 
interactive in order to emphasize on the usability of the system. 
Existing approaches such as [1, 6], do not consider any QoS 
constraints that relate to the update of user run time 
requirements. We take a different approach in this paper to 
schedule the workflow based on the user defined deadline 
constraints. We perform a single objective optimization task to 

minimize the execution cost of the workflow with an intuition 
that based on the provided deadline the cost can vary. It is based 
on the assumption that the provided deadline the cost can vary 
over time and that the workflow costs are smaller for large 
workflows than small ones.  

In this paper, we propose a new Big data wOrkflow 
scheduleR undeR deadlIne conStraint (BORRIS) that is used to 
minimize the execution cost of the workflow under a provided 
deadline constraint in a heterogeneous cloud computing 
environment. We implemented the proposed algorithm in our 
big data workflow system called DATAVIEW and the 
experimental results show the competitive advantage of our 
approach. 

The rest of the paper is organized as follows, first, in Section 
II we define and formalize our system model. In Section III we 
explain our workflow scheduling algorithm in detail. Then, in 
Section IV, the experimental results are shown and discussed. 
Section V presents the related work. Finally, the conclusions 
and future work are presented in Section VI. 

II. SYSTEM MODEL 

To execute a big data workflow in the cloud, we need to 
model the cloud first. A cloud computing environment is 
modeled as follows: 

 Definition 2.1 (Cloud Computing Environment C): A 
cloud computing environment is a 6-tuple C (R, RT, RC, FB, FR, 
RS), where 

 R is a set of resources. Each individual resource is 
denoted by Ri in the cloud computing environment. 

 RT is a set of resource types such as {"t2.nano”, 
“t2.micro”, “t2.small”, “t2.medium, “t2.large”, …}. 

 RT: R→ Q+ is the resource usage time function. RT(Ri), 
Ri ∈ R gives the time for the resource usage Ri in the 
cloud computing environment. The resource with the 
minimum RT is called Rslowest and the resource with the 
maximum RT is called Rfastest. 

 FB: R × R → Q+ is the data communication rate function. 
FB (Ri1, Ri2), Ri1, Ri2 ∈ R gives the data communication 
rate between Ri1 and Ri2. Q+

0 is some pre-determined unit 
like bytes per second. This function is used to calculate 
the data movement time between two resources in the 
cloud.  



 FR: R → Q+ is the resource computing speed function. 
FR(Ri), Ri ∈ R gives the speed for the computing 
resource Ri measured in some pre-determined unit like 
million instructions per machine cycles or million 
instructions per nanoseconds.  

 FS: RT → R is the resource provisioning function. FS (Rt), 
Rt ∈ RT returns a resource instance of the resource type 
of Rt.  

A big data workflow is used to model a process as a set of 
computational tasks and their data dependencies to analyze big 
datasets. A big data workflow can be modeled as a directed 
acyclic graph (DAG) such that workflow tasks are denoted as 
graph nodes and dependencies between tasks are denoted as 
graph edges. Formally, we define a big data workflow as: 

Definition 2.2 (Big Data Workflow W): A big data 
workflow can be formally defined as a 4-tuple W = (T, D, FT, 
FD), where 

 T is a set of tasks in the workflow W. Each individual 
task is denoted by Tk. 

 D = {<Tk1, Tk2> | Tk1, Tk2∈T, k1 ≠ k2; k1, k2 ≤ |T|, Tk2 
consumes data Dk1, k2 produced by Tk1} is a set of data 
dependencies. Dk1, k2 denotes that an amount of data is 
required to be transferred after Tk1 completes and before 
Tk2 starts. Dk represents all the outgoing edges from task 
Tk. 

 FT: T → Q+ is the execution time function. FT(Tk); Tk ∈ 
T gives the execution time of a task Tk, measured in some 
pre-determined unit like million instructions per 
machine cycles or million instructions per nanoseconds. 

 FD: D → Q+ is the data size function. FD (Dk1, k2), Dk1, k2 

∈ D gives the size of a dataset Dki, k2, measured in some 
predetermined unit like bits or bytes.  

To schedule a big data workflow to a set of cloud resources, 
more measurements like number of instructions of tasks and 
data sizes are required. Therefore, we define big data workflow 
graph as a weighted directed acyclic graph that includes a set of 
tasks and their data dependencies. The weights of the tasks and 
data edges are based on the average task computation and 
average data communication time, respectively. In addition, the 
workflow can be partitioned into a set of partitions such that 
there is no data dependency between all the tasks of each 
partition. A big data workflow graph can be defined formally 
as: 

Definition 2.3 (Big Data Workflow Graph ): Given a 
workflow W in a cloud computing environment , a big data 
workflow graph , represents a weighted directed acyclic graph 
with 14-tuple ( , , , , ̅ , , ̅ , Fm, , Fn, 

, , , ), where 

 The vertices of the graph represent a set of tasks T. 

 The edges of the graph represent a set of data 
dependencies D. 

 R is a set of resources in the cloud computing 
environment. 

 : × ×  → + 0 is the data communication cost 
function; ( , , , ),   , ∈ ; ,  ∈  
gives the data communication cost of ,  while 
transferring from resource  to resource . 

 ̅:  → + 0 is the average data communication cost 
function. ̅ (k1, k2), Dk1, k2 ∈ D gives the average data 
communication cost of Dk1, k2 in resources R, which is 
taken as the weight of edge in the graph G. The weight 
of the edge is 0 for the same resource. 

 Fp: T×R → Q+ is the task computation cost function. Fp 

(Tk, Ri), Tk ∈ T, Ri ∈ R gives the computation cost of Tk 
on resource Ri. 

 ̅ : T → Q+ is the average task computation cost 
function, ̅ (Tk) gives the average computation cost of 
task Tk, which is taken as the weight of vertex in the 
graph G.  

 Fm: D×R×R → Q+
0 is the data communication time 

function; (Dk1, k2, Ri1, Ri2), Dk1, k2 ∈ D; Ri1, Ri2 ∈ R 
gives the data communication time of Dk1, k2 while 
transferring from resource Ri1 to resource Ri2. 

 :  → + 0 is the average data communication time 
function.  (Dk1, k2), Dk1, k2 ∈ D gives the average data 
communication time of Dk1, k2 for all the resources, R. 

 Fn: T×R → Q+ is the task computation time function. Fp 

(Tk, Ri), Tk ∈ T, Ri ∈ R gives the computation time of Tk 
on resource Ri. 

 :  → +  is the average task computation time 
function,  ( ) gives the average computation time of 
task Tk, which is taken as the weight of vertex in the 
graph G.  

 P: N → T is the partition task function, P[j] or Pj gives 
all the tasks in partition j. RPj represents the set of 
resources of partition Pj. 

 TP: T → N is the task partition function, TP[Tk] or TPTk 

gives the partition number of task Tk. 

 RT: P → RT is the partition resource type function. RT 
[Pj] gives the resource type that is assigned to partition 
j. 

Workflow makespan is the total time needed to execute the 
whole workflow starting from the beginning task(s) to the end 
task(s) on the cloud. Our goal is to come up with an optimal 
workflow schedule such that the workflow execution cost is 
minimized while the workflow makespan meets the given 
deadline. To this end, we need to model workflow execution in 
order to be able to measure both workflow makespan and 
execution cost. As we divide the workflow into a set of 
partitions, the workflow makespan and cost will be the 
summation of the execution times and costs of all the partitions. 
We define the workflow execution environment as follows: 

Definition 2.4 (Workflow Execution Environment WEC): 

Given a workflow W in a cloud computing environment C, 
a workflow execution, represents the execution time of the 



workflow with 5-tuple WEC (CT, , minCT, maxCT, CC), 
where 

 CT: Partition ×  R → Q+ is the workflow partition 
completion time function. CT (Pj, Ri), Pj ∈ Partition 
gives the maximum of task computation time of all the 
tasks Tk ∈ Pj assigned to Ri as well as the maximum of 
data communication time of all the outgoing edges from 
all the tasks Tk ∈Pj. We formally define CT as: 

CT (Pj, Ri) = Max ∈ {  (Tk, Ri)} + 

Max ∈ { (Dk, k1, Ri, Ri1)} 

 : Partition → Q+ is the average workflow completion 
time function.  (Pj), Pj ∈ Partition gives the max of 
average task computation time of all the tasks Tk ∈ Pj and 
the average data communication time for all the 
outgoing edges from all the tasks Tk ∈ Pj. We formally 
define  as: 

 (Pj) = ∑  (Tk) +  ∑ ,
 

 (Dk, k1) 

 minCT: Partition → Q+
0 is the minimum workflow 

partition completion time function. minCT(Pj), Pj ∈ 
Partition gives the minimum task computation time of 
all the tasks Tk ∈ Pj and the minimum data 
communication time for all the outgoing edges from all 
the tasks Tk ∈ Pj. We formally define it as: 

minCT ( ) = ∑ ,∈  

 maxCT: Partition → Q+
0 is the maximum partition 

completion time function. maxCT(Pj), Pj ∈ Partition 
gives the maximum task computation times of all the 
tasks Tk ∈ Pj and the maximum data communication 
times for all the outgoing edges from all the tasks Tk ∈ 
Pj. We formally define maxCT as: 

maxCT ( ) = ∑ ( , )∈  

 CC: Partition ×  R → Q+ is the workflow partition 
completion cost function. CC (Pj, Ri), Pj ∈ Partition 
gives the sum of task computation cost of all the tasks Tk 
∈ Pj assigned to Ri as well as the data communication 
cost for all the outgoing edges from all the tasks Tk ∈ Pj. 
We formally define CC as: 

CC (Pj , Ri1) = ∑ ( , ) + 
∑ ∑ ( , , , ) ,

 
,
 

 

Our scheduling algorithm is a partition-based approach. 
First, the workflow is divided and partitioned into the several 
partitions. Then, the given deadline is partitioned into the sub-
deadlines and assigned to each workflow partition. The sub-
deadlines are calculated based on the execution time of each 
workflow partition. To calculate the sub-deadlines, we define 
workflow partition makespan as follows: 

Definition 2.5 (Workflow Partition Makespan PM): 
Given a workflow W in a cloud computing environment C and 
deadline D, a workflow partition makespan, represents the sub-

deadline provided to each partition of the workflow with 6-tuple 
PM (SD, Threshold, PRT, ACT, Earliness, Lateness), where 

 SD: Partition → Q+ is the sub-deadline partition 
function. SD (Pj), Pj ∈ Partition gives the sub-deadline 
assigned to the partition Pj. Supposedly CTM is the 
makespan of the critical path in the workflow, then SD 
can be calculated formally as follows:   

SD [ ] = (Max  ∈  / CTM) * D 

 Threshold: Partition → Q+ is the threshold partition 
function. Threshold (Pj), Pj ∈ Partition gives the 
threshold time assigned to the partition Pj. It can be 
calculated as follows:  

Threshold (Pj) = Max {0, SD (Pj+1) – minCT (Pj+1)} 

 PRT: Partition ×  R × SD ×  Threshold → RT is the 
partition resource type function. It is used to identify the 
slowest resource for executing the workflow tasks in a 
partition. The execution time of the resource type output 
of PRT is required to be less than the sum of sub-
deadline and threshold allocated to the partition.  

 ACT: Partition → Q+ is the actual completion time that 
is used to compute the total time for completing all the 
tasks in a partition. It can be formally defined as: 

ACT (Pj) = ∑ , ( )
∈

 

 Earliness: Partition → Q+ is the earliness partition 
function. Earliness (Pj), Pj ∈ Partition gives the 
earliness time that the partition Pj can be executed. It is 
calculated as follows:  

Earliness (Pj) = Max {0, SD (Pj) - ACT(Pj)}. 

 Lateness: Partition → Q+ is the lateness partition 
function. Lateness (Pj), Pj ∈ Partition gives the lateness 
time that the partition Pj is executed. It is calculated as 
follows: 

Lateness (Pj) = Max {0, ACT (Pj) – SD (Pj)} 

The critical path in a workflow can be computed by the 
SCPOR algorithm [6]. Our goal is to minimize workflow 
execution cost while satisfying the deadline constraint. We 
formally define our objective function and the constraints as 
follows: 

Definition 2.6 (Workflow Cost Minimization WC): Given 
a workflow W in a cloud computing environment C, and 
deadline D, workflow execution cost is the objective function 
and can be defined as follows 

WC = ∑ ∑ ( , ) ×  

where, 

=
1,          
0, ℎ                                                                 

 

such that the following constraints are satisfied: 

1) ∑ ∑ ( , ) ×  <= D 



2) ∑  = 1 for all the tasks in partition j assigned to the 
resource Ri ∈ R.   

There are three cases to consider: 

1) If D < ∑ ( ), then we can satisfy the deadline 
constraints and so a solution is to assign all the partition 
tasks to the slowest resource.  

2) If D > ∑ ( ), then we satisfy the deadline 
constraint by assigning all the partition tasks to the 
fastest resource as a solution.   

3) If  ∑ ( ) <= D <= ∑ ( ), then we 
use our strategy to find the optimal solution.  

III. THE BORRIS ALGORITHM 

The main steps of the BORRIS algorithm are shown in Fig.1 
Workflow specification and deadline are the two required 
inputs for BORRIS. In the first step, BORRIS parses the given 
workflow specification and assigns a non-negative number 
(weight) to each workflow task and edge to generate a weighted 
DAG. We use the number of instructions in of tasks, and data 
movement size of the edges along with the cloud resource types 
information in order to generate their weights. The average 
computation times are calculated as the weights of tasks and the 
average data movement times are calculated as the weights of 
edges.  

After generating the weighted DAG for the workflow, 
BORRIS partitions the workflow into several partitions such 
that there is no data dependency (edge) between the tasks inside 
each partition however, there is a possibility to have data 
dependencies between the partitions. In the next step, BORRIS 
distributes the given deadline and assigns initial sub-deadlines 
to all of the partitions. For the deadline distribution, BORRIS 
computes the maximum time needed to execute the workflow 
(i.e. workflow makespan) by calculating the makespan of the 
critical path. Then, it assigns the sub-deadlines to all of the 

partition based on the workflow makespan and average 
completion time of each partition.  

In the next step, the maximum and minimum completion 
times for each partition are calculated. The maximum 
completion time is the completion time of the partition once all 
its tasks are assigned to the slowest cloud resource and the 
minimum completion time is the completion time once all its 
tasks are assigned to the slowest cloud resource.  

In addition, BORRIS computes a threshold value for each 
partition by taking away some extra time from their subsequent 
partitions. The initial sub-deadline of each partitions is 
increased by the threshold and it provides more room to select 
a slower resource for the partition and therefore the execution 
cost of the partition is minimized.  

For the next step, BORRIS goes through all the partitions 
sequentially and complete the schedule map by assigning all the 
partitions on to the most appropriate cloud resources.  

After identifying the appropriate resource type for the 
partition, each task in the partition is scheduled to execute in a 
resource instance of the resource type in parallel. The actual 
completion time, the earliness and lateness values for each 
partition is calculated after partition execution. Then BORRIS 
adjusts the sub-deadline of the subsequent partition by using 
these earliness and lateness values. If the partition is the last 
partition, BORRIS does not need to calculate the earliness and 
lateness values as there is no subsequent partition that uses 
them. 

For example, let us consider the workflow of Fig. 2 with 200 
minutes as the deadline. This workflow consists of seven tasks 
as the vertices and ten data dependencies as the edges. The 
workflow is partitioned into three partitions as P1= {T1, D1,2, 
D1,3, D1,4, D1,5, D1,6}, P2= {T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and 
P3={T7}. Once the weighted DAG of the workflow (TABLE I. 
B, C) is computed, then the initial sub-deadline, maximum and 
minimum completion time as well as the threshold value of the 
three partitions are calculated and shown in TABLE I. D. 

 
Fig. 1. The BORRIS Flowchart. 

 
Fig. 2. Workflow example with seven tasks and ten data dependencies. 



TABLE I. A shows a list of cloud resources parameters 
including five resource types with their computation capacities 
and the associated costs.  

In the first step, the resource type, “t2.nano” is computed for 
the first partition as it is the slowest resource that can meet the 
partition sub-deadline, 15. By assigning the first partition to 
"t2.nano" and calculating its actual completion time, earliness 
value is 0 and lateness value is 5. These earliness and lateness 
values are passed to the next partition to update the sub-
deadline of the second partition. After this sub-deadline 
adjustment for partition 2, "t2.small" is selected as the slowest 
resource type for this partition. The earliness and lateness 
values of the second partition is calculated after execution the 
entire partition as earliness = 4 and lateness = 0. In the end, 
"t2.large" can be selected for the last partition as it is the slowest 
resource that meets the sub-deadline. Finally, the total 
completion cost of workflow execution which is minimized is 
$0.113. The earliness and lateness values are shown in TABLE 

I. E. 

BORRIS assigns the workflow tasks onto the appropriate 
cloud resource such that it minimizes the workflow execution 
cost while meeting the deadline constraints. The BORRIS 
algorithm is presented as Algorithm 1. Workflow specification 
and deadline are the two required inputs. The output is a set of 
pairs (<task, resource>) for all the tasks which indicates the 
cloud resource instances for executing of all the workflow 
tasks. In the first step, BORRIS parses the given workflow in 
order to generate the weighted DAG (line 4). Then the 
workflow is partitioned into several partitions (line 5). In line 6, 
the critical path of the workflow is calculated. Then, the total 
completion time of the workflow is calculated based on the 
completion time of the tasks in the critical path (lines 7-10). To 
identify the appropriate recourse for each task the algorithm 
evaluates all the partitions sequentially (lines 11-33). In lines 
12-13, an initial sub-deadline is assigned to the partition. In 
addition, the minimum and maximum completion times of the 
partition are calculated (lines 14-15). In lines 16-18, we 
calculate the sub-deadline for the second partition. If it is not 
the last partition (line 19), BORRIS then calculates the 
threshold (line 20) and the slowest resource type for all the tasks 
in the partition. It then adds this schedule to the output schedule  

 

map (lines 21-22). In line 23, BORRIS computes the maximum 
of actual completion time (ACT) of the partition tasks. In lines 
24-27, BORRIS calculates the lateness and earliness values of 
the partition to update the sub-deadline of the next subsequent 
partition. In lines 28-33, if it is the last partition then BORRIS 
updates the sub-deadline of the last partition (line 29). It 
calculates the slowest resource type for it and assigns all of the 
tasks in the last partition to different resource instances of this 
resource type. In the end, the schedule of the last partition is 
added to the output schedule map (line 30). Finally, in line 33, 
BORRIS returns the complete schedule that consists of all the 
tasks and the corresponding resources as a set of pairs (<task, 
resource>). 

IV. EXPERIMENTAL RESULTS 

A. Performance Evaluation 

In order to evaluate the performance of BORRIS, we 
developed a big data workflow for the automotive domain 

1:  Algorithm 1 BORRIS Scheduler 
2:  input: workflow w, deadline D 
3:  output: d, a map storing task-VM assignments. 
4:  parse w and generate a weighted DAG (w). 
5:  tasksByPartition ← partition workflow. 
6: CTL ← get all critical tasks in the workflow w 
7: CTM = 0 // Critical Task Makespan 
8: for each crti ∈ CTL 
9:      CTM = CTM + (crti) 
10: end for 
11: for each Partition Pj ∈ tasksByPartition 
12:   PMax = ∈ { ( )  

13:   SD[ ] = (PMax / CTM) * D  

14:   minCT [ ] = ∑ ,∈  

15:   maxCT [ ] = ∑ ( , )∈  

16:   if (Pj is first partition) then 
17:      SD[Pj+1] = (Max ∈ { ( )  / CTM) * D 

18:   end if 
19:   if (Pj is not last partition) then 
20:      Thres [ ] = Max{0, SD [ ] – minCT [ ]} 
21:      RT [ ] = PRT ( , R, SD [ ] + Thres [ ])  
22:      d ← d ∪ MAP (Tk, (RT [ ])) ∀ ∈  
23:      ACT [ ] = CT(Pj, (RT [ ]))  
24:      Lateness [ ] = Max {0, ACT [ ] - SD[ ]} 
25:      SD[Pj+1] = SD[Pj+1] –  Lateness [ ] 
26:      Earliness [ ] = Max {0, SD[ ] – ACT [ ]} 
27:      SD[Pj+1] = SD[Pj+1] + Earliness [ ] 
28:   else if (Pj is last Partition) then 
29:       SD [ ] = D - ∑ [ ] + [ ]  
30:       RT [Pj] = PRT (Pj, R, SD [ ])  
31:       d ← d ∪ MAP (Tk, (RT[Pj])) ∀ ∈  
32:    end if   
33: end for  
34: return d  
35: end function 

TABLE I. A) CLOUD RESOURCE CATALOGUE, B) TASK COMPUTATION 
COST C) DATA COMMUNICATION COST, D) INITIAL BUDGET ALLOCATION 

AND E) FINAL BUDGET ALLOCATION. 

 



DATAVIEW platform [13]. This workflow is an auto analytics 
workflow based on the OpenXC datasets [17]. OpenXC is an 
open source platform that can capture automatically various 
instruments of a car and sensors readings in real time. The 
OpenXC dataset is growing exponentially in terms of data size 
with an average growth in excess of 14 Eb [13]. OpenXC data 
analysis is very useful for different stock holders like 
automotive insurance companies to analyze how their 
customers drive by capturing the large OpenXC datasets 
received from their registered vehicles. As the OpenXC datasets 
are large, it is beneficial to analyze the data using cloud 
distributed computing resources. As a result, there is a need to 
minimize the execution cost for performing the analytics. 
BORRIS automatically learns the complexity of the tasks 
computation and the data transfer between the tasks from an 
initial estimate and it can be more accurate after each workflow 
run. 

Here we used Amazon EC2 cloud computing environment 
to perform our experiments. Amazon EC2 provides a 
framework that can provision and deprovision a variety of 
heterogeneous virtual machines (instances) with different 
compute, memory, storage and network capabilities. Each type 
of instance consists of an hourly cost for resource utilization 
and the execution time is based on the complexity level of the 
analytics workload. For example, the general purpose instance 
types are listed as:  

{"t2.nano", "t2.micro","t2.small","t2.medium","t2.large"}. 
The performance of the data analytics for a given workloads 
cheapest option and resources of type "t2.large" is the fastest 
and the most expensive option in terms of cost.   

We compared the BORRIS algorithm with two more 
approaches. The first one is the Workflow Responsive resource 
Provisioning and Scheduling (WRPS) algorithm [7]. The 
WRPS algorithm is the most recent work in the field of 
workflow scheduling. WRPS computes a set of bags of tasks 
(BoT) such that the tasks inside of each BoT are independent 
and can be executed in parallel. Then, it assigns a sub-deadline 
to each bag of tasks based on the given deadline and then 
schedules them onto heterogeneous types of cloud resources 
with the goal of workflow execution cost minimization and 
deadline constraints. The cost optimization problem is modeled 
as an unbounded knapsack minimization problem in that work.  

In WRPS, the authors assumed the tasks inside each BoT 
are homogeneous. We do not have this limitation and the tasks 
inside each level can be heterogeneous. However, in order to 
compare our strategy to WRPS we developed our OpenXC 
workflow such that the tasks of each level are homogenous.  

One of our main contributions is the application of a sub-
deadline adjustment technique that updates the assign sub-
deadline of the levels after completing each level. To 
demonstrate this technique, we then relaxed BORRIS (called 
BORRIS*) by setting the threshold, the earliness and the 
lateness to be zero. The WRPS algorithm provides an 
optimization to the BoT by scheduling the tasks in a bag to 
different types of machines but it does not update the sub-
deadlines of the other BoT based on the executed BoT. In our 
strategy, BORRIS assigns all the tasks inside a given level to 
the same type of machines. However, it has the capabilities of 

adjusting the sub-deadlines of the remaining levels after 
execution of the current level. 

B. Results and Analysis 

BORRIS was evaluated against the other two approaches 
using 10 distinctive workflows that were developed in the 
OpenXC domain with different levels of complexity and with 
different provided deadlines. In TABLE II, we presented all the 
10 workflows with their complexity levels like the computation 
and data intensity of all the tasks in each of the workflow and 
the user defined deadline. We did the experiments by varying 
the types of machines and presented the results for both 
makespan and cost parameters.  

In Fig. 3. b, we show that BORRIS outperforms WRPS by 
roughly 4-11% margin as the complexity of the workflow 
increases from w3 to w10. For the workflows between w1 and 
w3, which is of least complexity, WRPS outperforms BORRIS 
because WRPS assigns tasks in each bag onto resources of 
different types. The local optimization done at each level 
outperforms the global optimization performed by BORRIS 
when the complexity level is low. 

We evaluated the results of all three approaches and have 
demonstrated the cost minimization by varying the instance 
types from K = {5, 10, 15, 20, 25}. Please notice in these 
experiments we provided sufficient deadlines to execute each 
workflow as there are some cases that the provided deadlines 
are not enough to complete the workflow. In Fig. 3. a, we show 
the resource utilization in the cloud for various K values. The 
BORRIS algorithm outperforms WRPS because the resource is 
utilized to the maximum extent for the tasks in each level since 
we setup the level dependencies through a system driven 
threshold value and automatically update the sub-deadline with 
a system driven earliness or lateness value at run time. The 
earliness and lateness are calculated after the actual execution 
time of the previous level. By increasing the number of resource 
types (K) we can observe BORRIS has better performance 
compared to the other algorithms.  

V. RELATED WORK  

Big data workflows are resource-intensive applications as 
they naturally consist of a large number of tasks and produce 
massive datasets. The efficient workflow scheduling strategies 
can have significant impact on workflow performance. There 
has been extensive research on the workflow scheduling 
problem in the distributed computing community. These studies 

TABLE II. WORKLOAD DETAILS FOR OPENXC WORKFLOW. 

 



have been focusing on different aspects of the scheduling 

 
Fig. 3. a) Resource utilization, b) Execution cost minimization. 



problem based on the various QoS requirements. One of the 
most recent work is [7] in which the authors proposed a 
workflow scheduler that minimizes the execution cost while 
meeting a specified deadline. In their approach, they apply 
unbounded knapsack problem (UKP) to find an optimal 
schedule for bags of homogenous tasks. Although they are able 
to schedule a workflow into different cloud resources types 
efficiently they did not consider heterogeneous tasks. In 
addition, they did not use any run time sub-deadline 
adjustments. In [2, 3, 4] some other scheduling algorithms were 
proposed to minimize the execution cost with deadline 
constraints for the Grid utility systems. In [5, 8], the authors 
considered both budget and makespan as the QoS constraints, 
but did not use an objective function to minimize them. 

Lin et al. [1, 6] proposed an elastic scheduling algorithm to 
schedule the workflow dynamically in the cloud with the goal 
of makespan minimization. However, they do not consider any 
QoS constraints. In list-based workflow scheduling algorithms 
[9, 10], the workflow tasks are ranked and sorted based on their 
start times and execution times and then the tasks are executed 
sequentially. In clustering-based approaches [11, 12], tasks are 
first clustered in terms of maximum execution time or size of 
data movement. Then assign them on to possibly the same 
resource to minimize the data movement based upon these 
clusters. 

In our previous works [15, 16], we proposed data and task 
placement strategies for optimal workflow data and task 
placement in the cloud by considering the data and task 
interdependencies to cluster the most dependent data and tasks 
together. These clusters were used to assign onto the same 
resource in order to minimize time taken for data movement. 
The limitation of our previous strategies is that we did not 
consider any QoS constraints. In [18], we proposed a novel 
scheduling algorithm for executing big data workflows in the 
Cloud. The goal of that work was to minimize the workflow 
makespan for a user-specified budget. However, in this paper, 
we propose a new workflow scheduling algorithm with the goal 
of minimizing the workflow execution cost while meeting the 
specified deadline.  

VI. CONCLUSIONS AND FUTURE WORK 

 In this paper, we propose a novel Big data wOrkflow 
scheduleR undeR deadlIne conStraint called BORRIS 
algorithm. Our goal was to minimize the workflow execution 
cost while meeting the user-specified deadlines. BORRIS is a 
partition-based scheduling algorithm that supports high-
performance workflow scheduling in a heterogeneous cloud 
computing environment. We compared our strategy with the 
relaxed version of our approach and one of the most noted 
works in this area, we expressed these three strategies in our big 
data workflow system, DATAVIEW, in order to do a 
comprehensive comparison. The results of the comparison 
illustrate the performance advantages of the approach. In the 
future, we will compare our strategy with more existing 
workflow scheduling algorithms. In addition, we plan to 
improve the performance of our strategy by ranking the 
partitions and assigning them to various resource types.  
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