
Scheduling Big Data Workflows in the Cloud under
Deadline Constraints

Mahdi Ebrahimi
Dep. of Math. & Computer Science
Lawrence Technological University

Southfield, U.S.A.
mebrahimi@ltu.edu

Aravind Mohan
Dep. of Computer Science

Allegheny College
Meadville, U.S.A.

amohan@allegheny.edu

Shiyong Lu
Dep. of Computer Science

Wayne State University
Detroit, U.S.A.

shiyong@wayne.edu

Abstract—With the advent of cloud computing, an unbound
number of compute resources can be leased from the cloud
providers. In such an environment, the number of assigned
resources to a workflow can be elastically scaled in and out on a
demand basis using the added Quality of Service (QoS) constraints
such as the budget and the deadline. The heterogeneous nature of
the cloud resources makes the decision of selecting resource type
for each workflow a challenging problem. Although there are
several existing research studies that propose both static and
dynamic scheduling algorithms for both homogeneous and
heterogeneous cloud resource types, they do not take advantage of
the data dependency information that is part of the workflow
structure during the scheduling process. There is still room for
improvement, since the scheduling problem is an NP-hard
problem. In this paper we propose a new Big data wOrkflow
scheduleR undeR deadlIne conStraint (BORRIS) that is used to
minimize the execution cost of the workflow under a provided
deadline constraint in a heterogeneous cloud computing
environment. We have implemented the proposed algorithm in
our big data workflow system called DATAVIEW and the
experimental results show the competitive advantage of our
approach.

Keywords-big data workflows; big data; scheduling;BORRIS

I. INTRODUCTION

The current trend in the use of cloud-computing paradigms
for big data querying and analytics has opened up a new set of
challenges to the workflow-scheduling problem [7]. The cloud-
computing environment provides an easily accessible and
scalable framework that guides the process of leasing an
unbounded set of resources with heterogeneous types. The
workflow engine that is mainly responsible for the orchestration
of the execution of the workflow, will now need to make more
intelligent decisions about when and where to execute the tasks
in a workflow. The existing big data workflow engine [13, 14],
has a limitation on the assignment of resources to a workflow
at design time based on the structure of the workflow. Due to
the nature of big data processing in those workflows, the tasks
are compute and data intensive, and hence there is a strong need
for scheduling those tasks in different types of machines in the
cloud by making the necessary decisions at run time.

The scheduling decision making process needs to be user
interactive in order to emphasize on the usability of the system.
Existing approaches such as [1, 6], do not consider any QoS
constraints that relate to the update of user run time
requirements. We take a different approach in this paper to
schedule the workflow based on the user defined deadline
constraints. We perform a single objective optimization task to

minimize the execution cost of the workflow with an intuition
that based on the provided deadline the cost can vary. It is based
on the assumption that the provided deadline the cost can vary
over time and that the workflow costs are smaller for large
workflows than small ones.

In this paper, we propose a new Big data wOrkflow
scheduleR undeR deadlIne conStraint (BORRIS) that is used to
minimize the execution cost of the workflow under a provided
deadline constraint in a heterogeneous cloud computing
environment. We implemented the proposed algorithm in our
big data workflow system called DATAVIEW and the
experimental results show the competitive advantage of our
approach.

The rest of the paper is organized as follows, first, in Section
II we define and formalize our system model. In Section III we
explain our workflow scheduling algorithm in detail. Then, in
Section IV, the experimental results are shown and discussed.
Section V presents the related work. Finally, the conclusions
and future work are presented in Section VI.

II. SYSTEM MODEL

To execute a big data workflow in the cloud, we need to
model the cloud first. A cloud computing environment is
modeled as follows:

 Definition 2.1 (Cloud Computing Environment C): A
cloud computing environment is a 6-tuple C (R, RT, RC, FB, FR,
RS), where

 R is a set of resources. Each individual resource is
denoted by Ri in the cloud computing environment.

 RT is a set of resource types such as {"t2.nano”,
“t2.micro”, “t2.small”, “t2.medium, “t2.large”, …}.

 RT: R→ Q+ is the resource usage time function. RT(Ri),
Ri ∈ R gives the time for the resource usage Ri in the
cloud computing environment. The resource with the
minimum RT is called Rslowest and the resource with the
maximum RT is called Rfastest.

 FB: R × R → Q+ is the data communication rate function.
FB (Ri1, Ri2), Ri1, Ri2 ∈ R gives the data communication
rate between Ri1 and Ri2. Q+

0 is some pre-determined unit
like bytes per second. This function is used to calculate
the data movement time between two resources in the
cloud.

 FR: R → Q+ is the resource computing speed function.
FR(Ri), Ri ∈ R gives the speed for the computing
resource Ri measured in some pre-determined unit like
million instructions per machine cycles or million
instructions per nanoseconds.

 FS: RT → R is the resource provisioning function. FS (Rt),
Rt ∈ RT returns a resource instance of the resource type
of Rt.

A big data workflow is used to model a process as a set of
computational tasks and their data dependencies to analyze big
datasets. A big data workflow can be modeled as a directed
acyclic graph (DAG) such that workflow tasks are denoted as
graph nodes and dependencies between tasks are denoted as
graph edges. Formally, we define a big data workflow as:

Definition 2.2 (Big Data Workflow W): A big data
workflow can be formally defined as a 4-tuple W = (T, D, FT,
FD), where

 T is a set of tasks in the workflow W. Each individual
task is denoted by Tk.

 D = {<Tk1, Tk2> | Tk1, Tk2∈T, k1 ≠ k2; k1, k2 ≤ |T|, Tk2
consumes data Dk1, k2 produced by Tk1} is a set of data
dependencies. Dk1, k2 denotes that an amount of data is
required to be transferred after Tk1 completes and before
Tk2 starts. Dk represents all the outgoing edges from task
Tk.

 FT: T → Q+ is the execution time function. FT(Tk); Tk ∈
T gives the execution time of a task Tk, measured in some
pre-determined unit like million instructions per
machine cycles or million instructions per nanoseconds.

 FD: D → Q+ is the data size function. FD (Dk1, k2), Dk1, k2

∈ D gives the size of a dataset Dki, k2, measured in some
predetermined unit like bits or bytes.

To schedule a big data workflow to a set of cloud resources,
more measurements like number of instructions of tasks and
data sizes are required. Therefore, we define big data workflow
graph as a weighted directed acyclic graph that includes a set of
tasks and their data dependencies. The weights of the tasks and
data edges are based on the average task computation and
average data communication time, respectively. In addition, the
workflow can be partitioned into a set of partitions such that
there is no data dependency between all the tasks of each
partition. A big data workflow graph can be defined formally
as:

Definition 2.3 (Big Data Workflow Graph ࡳ): Given a
workflow W in a cloud computing environment ܥ, a big data
workflow graph ܩ, represents a weighted directed acyclic graph
with 14-tuple ܩ (ܶ ܦ , , ܴ ܿܨ , ௖̅ܨ , ݌ܨ , ௣̅ܨ , , Fm, ܨ௠ഥ , Fn,
௡തܨ , ܲ, ܶܲ, ܴܶ), where

 The vertices of the graph represent a set of tasks T.

 The edges of the graph represent a set of data
dependencies D.

 R is a set of resources in the cloud computing
environment.

 ܦ :ܿܨ×ܴ×ܴ → ܳ + 0 is the data communication cost
function; ܨ௖(ܦ௞ଵ,௞ଶ, ܴ௜ଵ, ܴ௜ଶ), ܦ ௞ଵ,௞ଶ∈ ܦ; ܴ௜ଵ, ܴ௜ଶ ∈ ܴ
gives the data communication cost of ܦ௞ଵ,௞ଶ while
transferring from resource ܴ௜ଵ to resource ܴ௜ଶ.

 ܨ௖̅: ܦ → ܳ + 0 is the average data communication cost
function. ܨ௖̅ (k1, k2), Dk1, k2 ∈ D gives the average data
communication cost of Dk1, k2 in resources R, which is
taken as the weight of edge in the graph G. The weight
of the edge is 0 for the same resource.

 Fp: T×R → Q+ is the task computation cost function. Fp

(Tk, Ri), Tk ∈ T, Ri ∈ R gives the computation cost of Tk
on resource Ri.

 ܨ௣̅ : T → Q+ is the average task computation cost
function, ܨ௣̅ (Tk) gives the average computation cost of
task Tk, which is taken as the weight of vertex in the
graph G.

 Fm: D×R×R → Q+
0 is the data communication time

function; ܨ௠ (Dk1, k2, Ri1, Ri2), Dk1, k2 ∈ D; Ri1, Ri2 ∈ R
gives the data communication time of Dk1, k2 while
transferring from resource Ri1 to resource Ri2.

 ܨ௠ഥ ܳ → ܦ : + 0 is the average data communication time
function. ܨ௠ഥ (Dk1, k2), Dk1, k2 ∈ D gives the average data
communication time of Dk1, k2 for all the resources, R.

 Fn: T×R → Q+ is the task computation time function. Fp

(Tk, Ri), Tk ∈ T, Ri ∈ R gives the computation time of Tk
on resource Ri.

 ܨ௡ത : ܶ → ܳ + is the average task computation time
function, ܨ௡ത (௞ܶ) gives the average computation time of
task Tk, which is taken as the weight of vertex in the
graph G.

 P: N → T is the partition task function, P[j] or Pj gives
all the tasks in partition j. RPj represents the set of
resources of partition Pj.

 TP: T → N is the task partition function, TP[Tk] or TPTk

gives the partition number of task Tk.

 RT: P → RT is the partition resource type function. RT
[Pj] gives the resource type that is assigned to partition
j.

Workflow makespan is the total time needed to execute the
whole workflow starting from the beginning task(s) to the end
task(s) on the cloud. Our goal is to come up with an optimal
workflow schedule such that the workflow execution cost is
minimized while the workflow makespan meets the given
deadline. To this end, we need to model workflow execution in
order to be able to measure both workflow makespan and
execution cost. As we divide the workflow into a set of
partitions, the workflow makespan and cost will be the
summation of the execution times and costs of all the partitions.
We define the workflow execution environment as follows:

Definition 2.4 (Workflow Execution Environment WEC):

Given a workflow W in a cloud computing environment C,
a workflow execution, represents the execution time of the

workflow with 5-tuple WEC (CT, ܶܥതതതത , minCT, maxCT, CC),
where

 CT: Partition × R → Q+ is the workflow partition
completion time function. CT (Pj, Ri), Pj ∈ Partition
gives the maximum of task computation time of all the
tasks Tk ∈ Pj assigned to Ri as well as the maximum of
data communication time of all the outgoing edges from
all the tasks Tk ∈Pj. We formally define CT as:

CT (Pj, Ri) = Max்ೖ∈௉௝{ܨ௡ (Tk, Ri)} +

Max்ೖ∈௉௝{ܨ௠(Dk, k1, Ri, Ri1)}

 ܶܥതതതത: Partition → Q+ is the average workflow completion
time function. ܶܥതതതത (Pj), Pj ∈ Partition gives the max of
average task computation time of all the tasks Tk ∈ Pj and
the average data communication time for all the
outgoing edges from all the tasks Tk ∈ Pj. We formally
define ܶܥതതതത as:

∑ = തതതത (Pj)ܶܥ ௡തܨ
௄
௞ୀଵ (Tk) + ∑ ௠ഥܨ

௄
௞ୀଵ,௞ଵୀଵ

௞ ஷ௞ଵ
 (Dk, k1)

 minCT: Partition → Q+
0 is the minimum workflow

partition completion time function. minCT(Pj), Pj ∈
Partition gives the minimum task computation time of
all the tasks Tk ∈ Pj and the minimum data
communication time for all the outgoing edges from all
the tasks Tk ∈ Pj. We formally define it as:

minCT (௝ܲ) = ∑ ൫ܶܥ ௞ܶ , ܴ௙௔௦௧௘௦௧൯்ೖ∈ ௉ೕ

 maxCT: Partition → Q+
0 is the maximum partition

completion time function. maxCT(Pj), Pj ∈ Partition
gives the maximum task computation times of all the
tasks Tk ∈ Pj and the maximum data communication
times for all the outgoing edges from all the tasks Tk ∈
Pj. We formally define maxCT as:

maxCT (௝ܲ) = ∑)ܶܥ ௞ܶ , ܴ௦௟௢௪௘௦௧)்ೖ∈ ௉ೕ

 CC: Partition × R → Q+ is the workflow partition
completion cost function. CC (Pj, Ri), Pj ∈ Partition
gives the sum of task computation cost of all the tasks Tk
∈ Pj assigned to Ri as well as the data communication
cost for all the outgoing edges from all the tasks Tk ∈ Pj.
We formally define CC as:

CC (Pj , Ri1) = ∑)௣ܨ ௞ܶ , ܴ௜ଵ)௄
௞ୀଵ +

∑ ∑ ௞,௞భܦ)௖ܨ
, ܴ௜ଵ, ܴ௜ଶ) ௄

௞ୀଵ,௞ଵୀଵ
௞ ஷ௞ଵ

ூ
௜ଵ,௜ଶୀଵ
௜ଵ ஷ௜ଶ

Our scheduling algorithm is a partition-based approach.
First, the workflow is divided and partitioned into the several
partitions. Then, the given deadline is partitioned into the sub-
deadlines and assigned to each workflow partition. The sub-
deadlines are calculated based on the execution time of each
workflow partition. To calculate the sub-deadlines, we define
workflow partition makespan as follows:

Definition 2.5 (Workflow Partition Makespan PM):
Given a workflow W in a cloud computing environment C and
deadline D, a workflow partition makespan, represents the sub-

deadline provided to each partition of the workflow with 6-tuple
PM (SD, Threshold, PRT, ACT, Earliness, Lateness), where

 SD: Partition → Q+ is the sub-deadline partition
function. SD (Pj), Pj ∈ Partition gives the sub-deadline
assigned to the partition Pj. Supposedly CTM is the
makespan of the critical path in the workflow, then SD
can be calculated formally as follows:

SD [௝ܲ] = (Max்ೖ ∈ ୔୨൛ܶܥതതതത൫ ௃ܲ൯ൟ / CTM) * D

 Threshold: Partition → Q+ is the threshold partition
function. Threshold (Pj), Pj ∈ Partition gives the
threshold time assigned to the partition Pj. It can be
calculated as follows:

Threshold (Pj) = Max {0, SD (Pj+1) – minCT (Pj+1)}

 PRT: Partition × R × SD × Threshold → RT is the
partition resource type function. It is used to identify the
slowest resource for executing the workflow tasks in a
partition. The execution time of the resource type output
of PRT is required to be less than the sum of sub-
deadline and threshold allocated to the partition.

 ACT: Partition → Q+ is the actual completion time that
is used to compute the total time for completing all the
tasks in a partition. It can be formally defined as:

ACT (Pj) = ∑ ൫ܶܥ ௞ܶ , ൣ்ܴ)ௌܨ ௝ܲ൧)൯௄
୩ୀଵ

்ೖ∈௉ೕ

 Earliness: Partition → Q+ is the earliness partition
function. Earliness (Pj), Pj ∈ Partition gives the
earliness time that the partition Pj can be executed. It is
calculated as follows:

Earliness (Pj) = Max {0, SD (Pj) - ACT(Pj)}.

 Lateness: Partition → Q+ is the lateness partition
function. Lateness (Pj), Pj ∈ Partition gives the lateness
time that the partition Pj is executed. It is calculated as
follows:

Lateness (Pj) = Max {0, ACT (Pj) – SD (Pj)}

The critical path in a workflow can be computed by the
SCPOR algorithm [6]. Our goal is to minimize workflow
execution cost while satisfying the deadline constraint. We
formally define our objective function and the constraints as
follows:

Definition 2.6 (Workflow Cost Minimization WC): Given
a workflow W in a cloud computing environment C, and
deadline D, workflow execution cost is the objective function
and can be defined as follows

WC = ∑ ∑)ܥܥ ௝ܲ , ܴ௜
ூ
௜ୀଵ)௃

௝ୀଵ × ௝ܺ௜

where,

௝ܺ௜ = ൜
1, ௝ܲ ݊݋݅ݐ݅ݐݎܽ݌ ݂݅ ௜ܴ ݁ܿݎݑ݋ݏ݁ݎ ݋ݐ ݀݁݊݃݅ݏݏܽ ݏ݅
0, ݁ݏ݅ݓݎℎ݁ݐ݋

such that the following constraints are satisfied:

1) ∑ ∑)ܶܥ ௝ܲ , ܴ௜
ூ
௜ୀଵ)௃

௝ୀଵ × ௝ܺ௜ <= D

2) ∑ ௝ܺ௜
௃
௝ୀଵ = 1 for all the tasks in partition j assigned to the

resource Ri ∈ R.

There are three cases to consider:

1) If D < ∑)ܶܥ݊݅݉ ௝ܲ)௃
௝ୀଵ , then we can satisfy the deadline

constraints and so a solution is to assign all the partition
tasks to the slowest resource.

2) If D > ∑)ܶܥݔܽ݉ ௝ܲ)௃
௝ୀଵ , then we satisfy the deadline

constraint by assigning all the partition tasks to the
fastest resource as a solution.

3) If ∑)ܶܥ݊݅݉ ௝ܲ)௃
௝ୀଵ <= D <= ∑)ܶܥݔܽ݉ ௝ܲ)௃

௝ୀଵ , then we
use our strategy to find the optimal solution.

III. THE BORRIS ALGORITHM

The main steps of the BORRIS algorithm are shown in Fig.1
Workflow specification and deadline are the two required
inputs for BORRIS. In the first step, BORRIS parses the given
workflow specification and assigns a non-negative number
(weight) to each workflow task and edge to generate a weighted
DAG. We use the number of instructions in of tasks, and data
movement size of the edges along with the cloud resource types
information in order to generate their weights. The average
computation times are calculated as the weights of tasks and the
average data movement times are calculated as the weights of
edges.

After generating the weighted DAG for the workflow,
BORRIS partitions the workflow into several partitions such
that there is no data dependency (edge) between the tasks inside
each partition however, there is a possibility to have data
dependencies between the partitions. In the next step, BORRIS
distributes the given deadline and assigns initial sub-deadlines
to all of the partitions. For the deadline distribution, BORRIS
computes the maximum time needed to execute the workflow
(i.e. workflow makespan) by calculating the makespan of the
critical path. Then, it assigns the sub-deadlines to all of the

partition based on the workflow makespan and average
completion time of each partition.

In the next step, the maximum and minimum completion
times for each partition are calculated. The maximum
completion time is the completion time of the partition once all
its tasks are assigned to the slowest cloud resource and the
minimum completion time is the completion time once all its
tasks are assigned to the slowest cloud resource.

In addition, BORRIS computes a threshold value for each
partition by taking away some extra time from their subsequent
partitions. The initial sub-deadline of each partitions is
increased by the threshold and it provides more room to select
a slower resource for the partition and therefore the execution
cost of the partition is minimized.

For the next step, BORRIS goes through all the partitions
sequentially and complete the schedule map by assigning all the
partitions on to the most appropriate cloud resources.

After identifying the appropriate resource type for the
partition, each task in the partition is scheduled to execute in a
resource instance of the resource type in parallel. The actual
completion time, the earliness and lateness values for each
partition is calculated after partition execution. Then BORRIS
adjusts the sub-deadline of the subsequent partition by using
these earliness and lateness values. If the partition is the last
partition, BORRIS does not need to calculate the earliness and
lateness values as there is no subsequent partition that uses
them.

For example, let us consider the workflow of Fig. 2 with 200
minutes as the deadline. This workflow consists of seven tasks
as the vertices and ten data dependencies as the edges. The
workflow is partitioned into three partitions as P1= {T1, D1,2,
D1,3, D1,4, D1,5, D1,6}, P2= {T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and
P3={T7}. Once the weighted DAG of the workflow (TABLE I.
B, C) is computed, then the initial sub-deadline, maximum and
minimum completion time as well as the threshold value of the
three partitions are calculated and shown in TABLE I. D.

Fig. 1. The BORRIS Flowchart.

Fig. 2. Workflow example with seven tasks and ten data dependencies.

TABLE I. A shows a list of cloud resources parameters
including five resource types with their computation capacities
and the associated costs.

In the first step, the resource type, “t2.nano” is computed for
the first partition as it is the slowest resource that can meet the
partition sub-deadline, 15. By assigning the first partition to
"t2.nano" and calculating its actual completion time, earliness
value is 0 and lateness value is 5. These earliness and lateness
values are passed to the next partition to update the sub-
deadline of the second partition. After this sub-deadline
adjustment for partition 2, "t2.small" is selected as the slowest
resource type for this partition. The earliness and lateness
values of the second partition is calculated after execution the
entire partition as earliness = 4 and lateness = 0. In the end,
"t2.large" can be selected for the last partition as it is the slowest
resource that meets the sub-deadline. Finally, the total
completion cost of workflow execution which is minimized is
$0.113. The earliness and lateness values are shown in TABLE

I. E.

BORRIS assigns the workflow tasks onto the appropriate
cloud resource such that it minimizes the workflow execution
cost while meeting the deadline constraints. The BORRIS
algorithm is presented as Algorithm 1. Workflow specification
and deadline are the two required inputs. The output is a set of
pairs (<task, resource>) for all the tasks which indicates the
cloud resource instances for executing of all the workflow
tasks. In the first step, BORRIS parses the given workflow in
order to generate the weighted DAG (line 4). Then the
workflow is partitioned into several partitions (line 5). In line 6,
the critical path of the workflow is calculated. Then, the total
completion time of the workflow is calculated based on the
completion time of the tasks in the critical path (lines 7-10). To
identify the appropriate recourse for each task the algorithm
evaluates all the partitions sequentially (lines 11-33). In lines
12-13, an initial sub-deadline is assigned to the partition. In
addition, the minimum and maximum completion times of the
partition are calculated (lines 14-15). In lines 16-18, we
calculate the sub-deadline for the second partition. If it is not
the last partition (line 19), BORRIS then calculates the
threshold (line 20) and the slowest resource type for all the tasks
in the partition. It then adds this schedule to the output schedule

map (lines 21-22). In line 23, BORRIS computes the maximum
of actual completion time (ACT) of the partition tasks. In lines
24-27, BORRIS calculates the lateness and earliness values of
the partition to update the sub-deadline of the next subsequent
partition. In lines 28-33, if it is the last partition then BORRIS
updates the sub-deadline of the last partition (line 29). It
calculates the slowest resource type for it and assigns all of the
tasks in the last partition to different resource instances of this
resource type. In the end, the schedule of the last partition is
added to the output schedule map (line 30). Finally, in line 33,
BORRIS returns the complete schedule that consists of all the
tasks and the corresponding resources as a set of pairs (<task,
resource>).

IV. EXPERIMENTAL RESULTS

A. Performance Evaluation

In order to evaluate the performance of BORRIS, we
developed a big data workflow for the automotive domain

1: Algorithm 1 BORRIS Scheduler
2: input: workflow w, deadline D
3: output: d, a map storing task-VM assignments.
4: parse w and generate a weighted DAG (w).
5: tasksByPartition ← partition workflow.
6: CTL ← get all critical tasks in the workflow w
7: CTM = 0 // Critical Task Makespan
8: for each crti ∈ CTL
9: CTM = CTM + ܶܥതതതത(crti)
10: end for
11: for each Partition Pj ∈ tasksByPartition
12: PMax = ்ݔܽܯೖ∈ ௉ೕ

)തതതതܶܥ} ௞ܶ)ሽ

13: SD[௝ܲ] = (PMax / CTM) * D

14: minCT [௝ܲ] = ∑ ൫ܥܥ ௞ܶ , ௙ܴ௔௦௧௘௦௧൯்ೖ∈ ௉ೕ

15: maxCT [௝ܲ] = ∑)ܥܥ ௞ܶ , ܴ௦௟௢௪௘௦௧)்ೖ∈ ௉ೕ

16: if (Pj is first partition) then
17: SD[Pj+1] = (Max்ೖ∈ ௉ೕశభ

)തതതതܶܥ} ௞ܶ)ሽ / CTM) * D

18: end if
19: if (Pj is not last partition) then
20: Thres [௝ܲ] = Max{0, SD [௝ܲାଵ] – minCT [௝ܲାଵ]}
21: RT [௝ܲ] = PRT (௝ܲ, R, SD [௝ܲ] + Thres [௝ܲ])
22: d ← d ∪ MAP (Tk, ܨௌ(RT [௝ܲ])) ∀ ௞ܶ ∈ ௝ܲ
23: ACT [௝ܲ] = CT(Pj, ܨௌ(RT [௝ܲ]))
24: Lateness [௝ܲ] = Max {0, ACT [௝ܲ] - SD[௝ܲ]}
25: SD[Pj+1] = SD[Pj+1] – Lateness [௝ܲ]
26: Earliness [௝ܲ] = Max {0, SD[௝ܲ] – ACT [௝ܲ]}
27: SD[Pj+1] = SD[Pj+1] + Earliness [௝ܲ]
28: else if (Pj is last Partition) then
29: SD [௝ܲ] = D - ∑ ൫ܶܥܣ[௝ܲଵ] +]ݏݏ݁݊݁ݐܽܮ ௝ܲଵ] ൯௃ିଵ

௝ଵୀଵ
30: RT [Pj] = PRT (Pj, R, SD [௝ܲ])
31: d ← d ∪ MAP (Tk, ܨௌ(RT[Pj])) ∀ ௞ܶ ∈ ௝ܲ
32: end if
33: end for
34: return d
35: end function

TABLE I. A) CLOUD RESOURCE CATALOGUE, B) TASK COMPUTATION
COST C) DATA COMMUNICATION COST, D) INITIAL BUDGET ALLOCATION

AND E) FINAL BUDGET ALLOCATION.

DATAVIEW platform [13]. This workflow is an auto analytics
workflow based on the OpenXC datasets [17]. OpenXC is an
open source platform that can capture automatically various
instruments of a car and sensors readings in real time. The
OpenXC dataset is growing exponentially in terms of data size
with an average growth in excess of 14 Eb [13]. OpenXC data
analysis is very useful for different stock holders like
automotive insurance companies to analyze how their
customers drive by capturing the large OpenXC datasets
received from their registered vehicles. As the OpenXC datasets
are large, it is beneficial to analyze the data using cloud
distributed computing resources. As a result, there is a need to
minimize the execution cost for performing the analytics.
BORRIS automatically learns the complexity of the tasks
computation and the data transfer between the tasks from an
initial estimate and it can be more accurate after each workflow
run.

Here we used Amazon EC2 cloud computing environment
to perform our experiments. Amazon EC2 provides a
framework that can provision and deprovision a variety of
heterogeneous virtual machines (instances) with different
compute, memory, storage and network capabilities. Each type
of instance consists of an hourly cost for resource utilization
and the execution time is based on the complexity level of the
analytics workload. For example, the general purpose instance
types are listed as:

{"t2.nano", "t2.micro","t2.small","t2.medium","t2.large"}.
The performance of the data analytics for a given workloads
cheapest option and resources of type "t2.large" is the fastest
and the most expensive option in terms of cost.

We compared the BORRIS algorithm with two more
approaches. The first one is the Workflow Responsive resource
Provisioning and Scheduling (WRPS) algorithm [7]. The
WRPS algorithm is the most recent work in the field of
workflow scheduling. WRPS computes a set of bags of tasks
(BoT) such that the tasks inside of each BoT are independent
and can be executed in parallel. Then, it assigns a sub-deadline
to each bag of tasks based on the given deadline and then
schedules them onto heterogeneous types of cloud resources
with the goal of workflow execution cost minimization and
deadline constraints. The cost optimization problem is modeled
as an unbounded knapsack minimization problem in that work.

In WRPS, the authors assumed the tasks inside each BoT
are homogeneous. We do not have this limitation and the tasks
inside each level can be heterogeneous. However, in order to
compare our strategy to WRPS we developed our OpenXC
workflow such that the tasks of each level are homogenous.

One of our main contributions is the application of a sub-
deadline adjustment technique that updates the assign sub-
deadline of the levels after completing each level. To
demonstrate this technique, we then relaxed BORRIS (called
BORRIS*) by setting the threshold, the earliness and the
lateness to be zero. The WRPS algorithm provides an
optimization to the BoT by scheduling the tasks in a bag to
different types of machines but it does not update the sub-
deadlines of the other BoT based on the executed BoT. In our
strategy, BORRIS assigns all the tasks inside a given level to
the same type of machines. However, it has the capabilities of

adjusting the sub-deadlines of the remaining levels after
execution of the current level.

B. Results and Analysis

BORRIS was evaluated against the other two approaches
using 10 distinctive workflows that were developed in the
OpenXC domain with different levels of complexity and with
different provided deadlines. In TABLE II, we presented all the
10 workflows with their complexity levels like the computation
and data intensity of all the tasks in each of the workflow and
the user defined deadline. We did the experiments by varying
the types of machines and presented the results for both
makespan and cost parameters.

In Fig. 3. b, we show that BORRIS outperforms WRPS by
roughly 4-11% margin as the complexity of the workflow
increases from w3 to w10. For the workflows between w1 and
w3, which is of least complexity, WRPS outperforms BORRIS
because WRPS assigns tasks in each bag onto resources of
different types. The local optimization done at each level
outperforms the global optimization performed by BORRIS
when the complexity level is low.

We evaluated the results of all three approaches and have
demonstrated the cost minimization by varying the instance
types from K = {5, 10, 15, 20, 25}. Please notice in these
experiments we provided sufficient deadlines to execute each
workflow as there are some cases that the provided deadlines
are not enough to complete the workflow. In Fig. 3. a, we show
the resource utilization in the cloud for various K values. The
BORRIS algorithm outperforms WRPS because the resource is
utilized to the maximum extent for the tasks in each level since
we setup the level dependencies through a system driven
threshold value and automatically update the sub-deadline with
a system driven earliness or lateness value at run time. The
earliness and lateness are calculated after the actual execution
time of the previous level. By increasing the number of resource
types (K) we can observe BORRIS has better performance
compared to the other algorithms.

V. RELATED WORK

Big data workflows are resource-intensive applications as
they naturally consist of a large number of tasks and produce
massive datasets. The efficient workflow scheduling strategies
can have significant impact on workflow performance. There
has been extensive research on the workflow scheduling
problem in the distributed computing community. These studies

TABLE II. WORKLOAD DETAILS FOR OPENXC WORKFLOW.

have been focusing on different aspects of the scheduling

Fig. 3. a) Resource utilization, b) Execution cost minimization.

problem based on the various QoS requirements. One of the
most recent work is [7] in which the authors proposed a
workflow scheduler that minimizes the execution cost while
meeting a specified deadline. In their approach, they apply
unbounded knapsack problem (UKP) to find an optimal
schedule for bags of homogenous tasks. Although they are able
to schedule a workflow into different cloud resources types
efficiently they did not consider heterogeneous tasks. In
addition, they did not use any run time sub-deadline
adjustments. In [2, 3, 4] some other scheduling algorithms were
proposed to minimize the execution cost with deadline
constraints for the Grid utility systems. In [5, 8], the authors
considered both budget and makespan as the QoS constraints,
but did not use an objective function to minimize them.

Lin et al. [1, 6] proposed an elastic scheduling algorithm to
schedule the workflow dynamically in the cloud with the goal
of makespan minimization. However, they do not consider any
QoS constraints. In list-based workflow scheduling algorithms
[9, 10], the workflow tasks are ranked and sorted based on their
start times and execution times and then the tasks are executed
sequentially. In clustering-based approaches [11, 12], tasks are
first clustered in terms of maximum execution time or size of
data movement. Then assign them on to possibly the same
resource to minimize the data movement based upon these
clusters.

In our previous works [15, 16], we proposed data and task
placement strategies for optimal workflow data and task
placement in the cloud by considering the data and task
interdependencies to cluster the most dependent data and tasks
together. These clusters were used to assign onto the same
resource in order to minimize time taken for data movement.
The limitation of our previous strategies is that we did not
consider any QoS constraints. In [18], we proposed a novel
scheduling algorithm for executing big data workflows in the
Cloud. The goal of that work was to minimize the workflow
makespan for a user-specified budget. However, in this paper,
we propose a new workflow scheduling algorithm with the goal
of minimizing the workflow execution cost while meeting the
specified deadline.

VI. CONCLUSIONS AND FUTURE WORK

 In this paper, we propose a novel Big data wOrkflow
scheduleR undeR deadlIne conStraint called BORRIS
algorithm. Our goal was to minimize the workflow execution
cost while meeting the user-specified deadlines. BORRIS is a
partition-based scheduling algorithm that supports high-
performance workflow scheduling in a heterogeneous cloud
computing environment. We compared our strategy with the
relaxed version of our approach and one of the most noted
works in this area, we expressed these three strategies in our big
data workflow system, DATAVIEW, in order to do a
comprehensive comparison. The results of the comparison
illustrate the performance advantages of the approach. In the
future, we will compare our strategy with more existing
workflow scheduling algorithms. In addition, we plan to
improve the performance of our strategy by ranking the
partitions and assigning them to various resource types.

ACKNOWLEDGMENT

This work is supported by U.S. National Science
Foundation under ACI-1443069 and is based upon work
supported in part by the National Science Foundation under
Grant No. 0910812.

REFERENCES
[1] Cui Lin and Shiyong Lu, “Scheduling Scientific Workflows Elastically for
Cloud Computing,” in Proc. of the IEEE International Conference on Cloud
Computing (CLOUD), pp: 746-747, 2011.

[2] J. Yu, et al., “Cost-Based scheduling of scientific workflow application on
utility grids,” in Proc. of the First International Conference on e-Science and
Grid Computing, pp: 8-pp, 2005.

[3] S. Abrishami, et al., “Cost-driven scheduling of grid workflows using partial
critical paths,” in Proc. of the 11th IEEE/ACM International Conference on
Grid Computing, pp: 1400-1414 , 2010.
 [4] M. Wieczorek, et al., “Towards a general model of the multi-criteria
workflow scheduling on the grid,” in Proc. of the Future Generation Computer
Systems, vol. 25, no. 3, pp: 237–256, 2009.

[5] M. Malawski, et al., “Cost and deadline-constrained provisioning for
scientific workflow ensembles in IaaS clouds,” in Proc. of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, p: 1-11, 2012.

[6] C. Lin and S. Lu, “SCPOR: An elastic workflow scheduling algorithm for
services computing,” in Proc. of the International Conference on Service
Oriented Computing and Applications (SOCA), pp: 1-8, 2011.

[7] M.A. Rodriguez, R. Buyya, “A responsive Knapsack-based algorithm for
resource provisioning and scheduling of scientific workflows in clouds,” in
Proc. of the 44th International Conference on Parallel Processing, ICPP, pp:
839-848, 2015.

[8] J. Yu , R. Buyya, “Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,” in Proc. of the
Scientific Programming, v.14 n.3,4, pp: 217-230, 2006.

[9] H. Arabnejad and J. G. Barbosa, "List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table," in Proc. of the IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp: 682-694,
2014.

[10] H. Topcuoglu, et al., "Performance-effective and low-complexity task
scheduling for heterogeneous computing," in Proc. of the IEEE Transactions on
Parallel and Distributed Systems, vol. 13, no. 3, pp: 260-274, 2002.

[11] K. Bochenina, et al. "A clustering-based approach to static scheduling of
multiple workflows with soft deadlines in heterogeneous distributed systems,"
in Proc. of the Procedia Computer Science 51, pp: 2827-2831, 2015.

[12] Deldari, Arash, et al. "A Clustering Approach to Scientific Workflow
Scheduling on the Cloud with Deadline and Cost Constraints," in Proc. of the
Amirkabir International Journal of Modeling, Identification, Simulation &
Control 46.1, pp:19-29, 2014.

[13] A. Kashlev, et al., "A System Architecture for Running Big Data
Workflows in the Cloud," in Proc. of the 2014 IEEE International Conference
on Services Computing (SCC), pp: 51-58, 2014.

[14] A. Mohan, et al., "A NoSQL Data Model For Scalable Big Data Workflow
Execution," in Proc. of the International IEEE Congress on Big Data
(BigDataCongress), pp:52-59, 2016.

[15] M. Ebrahimi, et al., "TPS: A task placement strategy for big data
workflows," in Proc. of the International IEEE Conference on Big Data, 2015,
IEEE, pp: 523-530, 2015.

[16] M. Ebrahimi, et al., "BDAP: A Big Data Placement Strategy for Cloud-
Based Scientific Workflows," in Proc. of the Big Data Computing Service and
Applications (BigDataService), 2015 IEEE First International Conference on,
IEEE, pp: 105-114, 2015.

[17] The OpenXC Platform, http://openxcplatform.com

[18] A. Mohan, et al., "Scheduling big data workflows in the cloud under budget
constraints," in Proc. of the IEEE International Conference on Big Data (Big
Data), IEEE, pp: 2775-2784, 2016.

