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Abstract—While cloud platforms offer extensive services for
running and scaling applications, automatically deploying code
from GitHub repositories to cloud infrastructure remains a
manual, error-prone process requiring specialized expertise. Cur-
rent DevOps tools and Infrastructure-as-Code (IaC) frameworks
rely on fixed templates and cannot adapt to diverse application
requirements automatically. We propose CloudBot, a toolkit that
automates the complete deployment workflow by integrating
code analysis, IaC generation, and infrastructure provisioning
into a unified pipeline. CloudBot employs a pipeline where
specialized components, GitHub Analyst, Cloud Architect, and
Cloud Engineer, work sequentially to extract requirements, de-
sign infrastructure, and generate validated Terraform templates.
The toolkit uses large language models enhanced with retrieval-
augmented generation to map application needs to infrastructure
specifications. We evaluate CloudBot with AWS cloud across three
use cases: text processing, image analysis, and video processing.
CloudBot achieves consistent deployment success, with all config-
urations deploying and executing correctly. Comparing generated
infrastructure against expert-written baselines reveals similarity
scores of 18-43% across syntax, semantic, and functional dimen-
sions. While generated configurations successfully deploy, they
tend toward over-provisioning compared to minimal expert spec-
ifications. As the first end-to-end automated deployment system,
CloudBot demonstrates LLM-based infrastructure automation
feasibility while establishing quantitative baselines for measuring
future improvements toward expert-level generation quality.

Index Terms—Cloud Infrastructure Automation, Infrastruc-
ture as Code (IaC), Large Language Models (LLM), Retrieval-
Augmented Generation (RAG), Multi-Agent, Cloud Computing,
GitHub Code Analysis.

I. INTRODUCTION

Cloud application deployment has emerged as a critical
challenge for developers and organizations adopting cloud
platforms. While cloud computing promises flexibility, scal-
ability, and on-demand resources, moving an application from
a GitHub repository to running infrastructure on AWS, Azure,
or Google Cloud remains highly manual and error-prone [1].
Developers must understand application requirements, trans-
late them into infrastructure specifications, configure services,
provision resources, deploy code, and validate operations steps
that demand specialized expertise and consume significant
time. The challenge of automated ”code-to-cloud” deployment
is both timely and important, highlighting the gap between
increasing application complexity and limited automation
available to developers [2], [3].

Consider a data science team developing a video analysis
application. To deploy this to the cloud, they must determine
appropriate compute instances, identify system dependencies

like ffmpeg, configure storage, set up security groups, write
IaC templates, validate configurations, provision infrastructure,
transfer code, install dependencies, execute the application,
and collect results. Each step requires cloud platform knowl-
edge, introduces potential errors, and consumes time better
spent on application logic. When requirements change or the
application moves to a different provider, much of this work
must be repeated.

Infrastructure-as-Code platforms like Terraform and AWS
CloudFormation have improved resource management through
declarative specifications, but still demand substantial manual
expertise [4], [5]. TaC frameworks provide consistency once
templates are written, but do not automate the critical first
step: understanding application requirements and translating
them into infrastructure specifications. Developers must man-
ually analyze code, identify dependencies, determine resource
needs, and encode this knowledge into templates-precisely the
expertise-intensive steps that limit cloud adoption.

Recent advances in large language models (LLMs) show
promise in analyzing codebases [6], [7]. LLM-driven IaC gen-
eration has demonstrated syntactically correct specifications,
yet significant gaps remain: deployment success rates as low
as 30% without iterative refinement, poor intent alignment, and
minimal security compliance [8], [9]. These systems assume
infrastructure requirements are explicitly specified in natural
language prompts rather than automatically extracted from
code. The process remains fragmented, leaving optimization
opportunities at the intersection of code analysis, infrastructure
specification, and deployment execution untapped [10].

To address these limitations, we propose CloudBot, a toolkit
that integrates code analysis, resource optimization, and IaC
generation into a single coordinated pipeline. CloudBot lever-
ages LLMs, retrieval-augmented generation (RAG), to bridge
the gap between application repositories and operational in-
frastructure. Our research addresses three key questions:

RQ1: Can LLMs generate Infrastructure-as-Code that suc-
cessfully deploys and executes applications end-to-end without
manual intervention?

RQ2: How closely does automatically generated infrastruc-
ture match expert-written baseline configurations?

RQ3: What are the specific limitations of current LLM-
based infrastructure generation, and what mechanisms bridge
the gap toward expert-level quality?

CloudBot makes three key contributions addressing these
questions. First, it automates the full workflow from reposi-



tory analysis to deployed application execution, establishing
the first complete automation of the code-to-cloud cycle.
Second, it employs a pipeline where the GitHub Analyst
extracts requirements, the Cloud Architect craft the prompt,
and the Cloud Engineer generates validated Terraform tem-
plates through RAG-enhanced generation and intelligent re-
pair. Third, through systematic experiments across text pro-
cessing, image analysis, and video processing applications,
CloudBot establishes quantitative baselines measuring current
LLM-based generation capabilities. Our results show consis-
tent deployment success while revealing 18-43% similarity
to expert baselines, indicating that current LLMs produce
working but non-minimal infrastructure.

These contributions demonstrate both feasibility and current
limitations of fully automated cloud deployment. CloudBot
answers RQ1 affirmatively: LLMs can generate deployable
IaC for complete automation. Our similarity analysis addresses
RQ2, quantifying the quality gap. The patterns we identify
address RQ3, revealing areas needing improvement: reducing
over-provisioning, better capturing minimal requirements, and
handling edge cases in dependency specifications.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work in LLM-driven IaC generation,
RAG for cloud systems. Section III describes CloudBot’s
architecture, detailing the pipeline and workflow. Section IV
presents our experimental methodology. Section V reports
results demonstrating deployment success and quantifying
similarity to expert baselines. Section VI discusses findings,
implications, and limitations. Section VII concludes with con-
tributions and future directions.

II. RELATED WORK
A. LLM-Driven Infrastructure-as-Code Generation

Large language models have shown promise in automating
IaC generation from natural language descriptions. WISDOM-
Ansible [11] fine-tuned transformer models on Ansible YAML
data, achieving a BLEU score of 66.67, outperforming Codex-
Davinci-002 (50.4). However, these approaches focus primar-
ily on syntactic correctness without validating actual deploy-
ability.

TaCGen [8] addressed this gap through iterative feed-
back mechanisms, improving Claude-3.5’s deployment suc-
cess from 30.2% to 98% over 25 iterations. Despite these
improvements, significant challenges remain: IaCGen achieved
only 25.2% accuracy in intent alignment and 8.4% in security
compliance, indicating that LLMs struggle with application-
specific requirements and security best practices. The IaC-Eval
benchmark [9] revealed even starker limitations, with GPT-4
achieving only 19.36% pass@1 accuracy on 458 AWS scenar-
ios, compared to 86.6% on Python benchmarks. Traditional
enhancement strategies like few-shot prompting degraded per-
formance, while RAG provided only modest improvements
(6.14% on average).

Beyond generation accuracy, Vo et al. [12] found that 84.5%
of Terraform repositories contain code smells, with LLMs
detecting 92.9% compared to traditional linters’ 11.9-14.3%.

A broader survey [13] documented these challenges, noting
the scarcity of IaC training data and difficulty evaluating
correctness without deployment. These systems share a critical
limitation: they focus exclusively on IaC generation, assum-
ing infrastructure requirements are pre-specified in natural
language. They do not address automatic extraction of re-
quirements from application code, nor handle post-deployment
execution and result collection.

B. Retrieval-Augmented Generation for Cloud Systems

Retrieval-augmented generation (RAG) [14] enhances
LLM-based systems by grounding them in domain-specific
knowledge. Yang et al. [15] showed that agents with retrieved
service documentation make better VM provisioning decisions
by accessing current cloud service information and pricing
models. SARGE [16] applies RAG to detect [aC misconfigura-
tions by retrieving security policies during analysis, identifying
violations invisible to syntax checking alone.

Choudhary et al. [17] demonstrated RAG’s effectiveness in
warehouse robotics automation, where LLMSs access dynamic
inventory and operational data to guide robot task allocation.
Their system improved query accuracy from 75% to 100% and
eliminated hallucinations by retrieving real-time warehouse
state, showing RAG’s potential for infrastructure automation
requiring dynamic context. However, existing RAG systems
for cloud automation operate in isolation on specific tasks like
provisioning or security scanning. They lack integration across
the full deployment pipeline and use static retrieval strategies
rather than adapting to evolving workflow context.

C. Multi-Agent Systems for Cloud Operations

Multi-agent LLM systems have shown promise for complex
tasks requiring diverse expertise. Recent surveys [18], [19]
highlight that multi-agent architectures outperform single-
agent systems by distributing responsibilities among special-
ized agents. In software engineering, agents take on distinct
roles such as planner, implementer, and reviewer, collaborating
to produce higher-quality outputs [20].

RCAgent [21] uses multiple agents for root cause analysis
in cloud environments, collecting system data and diagnosing
issues collaboratively. However, it focuses on debugging ex-
isting deployments rather than automating initial provisioning.
General-purpose frameworks like AutoGen [22] and CrewAl
provide infrastructure for building collaborative systems but
require significant customization for cloud deployment tasks.
They lack pre-configured agents specialized for infrastructure
automation or built-in knowledge about cloud services and
deployment patterns.

D. How CloudBot Differs

Unlike existing work that focuses on isolated stages, Cloud-
Bot provides true end-to-end automation from repository anal-
ysis to deployed application. While IaCGen and similar sys-
tems assume infrastructure requirements are specified in nat-
ural language prompts, CloudBot automatically extracts these
requirements by analyzing application code, dependencies, and



structure. CloudBot assigns specialized roles (GitHub Analyst,
Cloud Architect, Cloud Engineer) that work sequentially. Most
critically, existing systems stop at infrastructure provisioning,
but CloudBot completes the loop by executing applications,
and collecting outputs. By combining automated requirement
extraction, RAG-enhanced generation with validation and re-
pair, and full execution management, CloudBot addresses the
fragmentation in prior work and delivers a cohesive solution
for practical cloud deployment automation.

III. SYSTEM ARCHITECTURE AND DESIGN
A. Overview

CloudBot is designed as an end-to-end automated pipeline
that transforms application source code into fully deployed
cloud infrastructure, as depicted in Figure 1. Given a repository
URL as input, the system performs a sequence of operations:
it analyzes the repository structure and requirements, gen-
erates Infrastructure-as-Code (IaC) specifications using large
language models, validates and repairs the generated code,
deploys the infrastructure on a cloud platform, and finally
executes the application while collecting performance metrics
and outputs.

The system architecture follows a modular design philoso-
phy where each component performs a well-defined task and
communicates through standardized interfaces. This separation
of concerns enables independent development, testing, and
replacement of individual components while maintaining over-
all system integrity. The complete workflow can be formally
represented as a function composition:

CloudBot(R) = Do EoV oG o A(R), (1)

where R represents the input repository, A is the analysis
function, G is the generation function, V' is the validation
function, E is the extraction function, and D is the deployment
function. Each function transforms its input into a form
suitable for the next stage in the pipeline.

B. GitHub Analyst

The GitHub Analyst is the first component of the toolkit.
Its main role is to collect and prepare code from a GitHub
repository for further processing. It takes a GitHub project
URL as input, verifies it, and then downloads the project
files into a clean, organized folder. The files are saved with a
timestamp to ensure version tracking, and any Git history is
removed to keep the snapshot simple and consistent. This step
ensures that the next component the Cloud Architect receives
a stable, ready-to-use version of the repository. In essence,
the GitHub Analyst automates the process of retrieving and
organizing source code so the rest of the system can focus on
analyzing and generating the required infrastructure setup.

C. Cloud Architect

The Cloud Architect is the second component of the toolkit
and acts as the bridge between the raw code and the infras-
tructure generation process. Its primary role is to interpret

the project context from the cloned repository and prepare
structured input for the next stage of the pipeline. It processes
the collected repository, extracts relevant information about
the project’s purpose or functionality, and transforms that
understanding into a clear and organized prompt that guides
the Cloud Engineer. In simpler terms, the Cloud Architect
translates what the project is about into the infrastructure
that needs to be built. This ensures that the system can
automatically and accurately generate the Infrastructure as
Code (IaC) needed to deploy the application in the cloud.
The output of this analysis is a structured prompt P that
encapsulates the repository’s infrastructure requirements:

P = fyuse(README, S, D, E), )

where S represents the repository structure, D represents the
dependencies, and E represents the identified entry point.
The prompt is designed to be concise yet complete, explicitly
requesting minimal but functional Terraform code that includes
provider configuration, compute instance specifications, secu-
rity group rules, and initialization scripts.

D. Cloud Engineer

Once the prompt is constructed, it is sent to the RAG-
enhanced LLM service for infrastructure code generation. This
component combines the power of large language models
with retrieval-augmented generation to produce contextually
appropriate Terraform code. The RAG system maintains a
knowledge base of cloud provider documentation, common
infrastructure patterns, and verified deployment templates.

The generation process can be modeled as:

where T,y is the raw Terraform code generated by the model,
K represents the RAG knowledge base, and RAG(P, K)
retrieves relevant context from the knowledge base based
on the prompt. The LLM service runs locally using Ollama
[23], ensuring that no repository information or credentials
are transmitted to external services. This design choice prior-
itizes security and privacy while maintaining the benefits of
advanced language models.

The Cloud Engineer serves as the execution layer of the
toolkit, integrating LLaMA 3.2 3B [24] with and a Retrieval-
Augmented Generation (RAG) framework to produce accurate
and deployable Infrastructure as Code (IaC). It operates within
the Ollama environment, which locally manages both the
LLaMA model and the mxbai-embed-large embedding model
[25] used for the RAG. The RAG subsystem constructs a local
knowledge base by processing the cloud provider documenta-
tion, cleaning and segmenting them, and transforming the text
into vector representations using mxbai-embed-large. When a
query or structured prompt is received, it is reformulated for
clarity, embedded, and compared against the stored vectors
through cosine similarity to identify the most relevant context.
This context is passed to the LLaMA model, ensuring that code
generation is grounded in precise and semantically aligned
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Fig. 1. CloudBot system architecture showing the CloudBot Runner as the central hub connecting the GitHub repository URL with the other components
(GitHub Analyst, Cloud Architect and Cloud Engineer in orange), infrastructure provisioning, Application Code, and Logs & Metrics. Bidirectional arrows

indicate information flow throughout the deployment pipeline.

knowledge. After generation, the Cloud Engineer performs
an internal preparation step to ensure the produced IaC is
ready for deployment. It isolates the generated code from
any additional text, validates it against a verified baseline,
and automatically corrects inconsistencies or omissions. This
refinement process addresses the inherent variability of LLM
outputs, guaranteeing that the final Terraform configuration is
both syntactically correct and functionally reliable. Through
the integration of retrieval, generation, and automated valida-
tion, the Cloud Engineer establishes a unified, locally managed
pipeline capable of delivering reproducible, deployment-ready
infrastructure code.

E. CloudBot Runner

The CloudBot Runner functions as the automation and
orchestration layer of the entire system. Implemented as a
GitHub Actions workflow, it serves as a continuous integration
and continuous deployment (CI/CD) pipeline that manages
the execution of all components beginning from repository
acquisition to infrastructure deployment and application exe-
cution. Once triggered, it receives the GitHub repository URL
and initializes the sequence by invoking the GitHub Analyst
to clone and prepare the repository. It then calls the Cloud
Architect, which interprets the project context and formulates
structured prompts, followed by the Cloud Engineer, which
retrieves contextual data through the RAG subsystem and
generates the corresponding Terraform Infrastructure as Code
(IaC) using the LLaMA model hosted locally via Ollama.
After the IaC is produced, the CloudBot Runner proceeds
to validate and deploy it within an AWS environment. It
configures the necessary credentials, initializes Terraform,
plans, and applies the infrastructure setup provisioning virtual
resources such as EC2 instances as required. Once the in-

frastructure is successfully deployed, the workflow transitions
into executing the application use case derived from the cloned
repository, effectively running the Application code on top of
the newly provisioned cloud infrastructure. The results from
this execution, including logs and experimental outputs, are
then written back into the cloned GitHub repository usecase in
the CloudBot repository, ensuring versioned tracking of both
the IaC and the experimental outcomes. Through this fully
automated process, the CloudBot Runner transforms the entire
pipeline from code acquisition to deployment and evaluation
into a seamless workflow. It ensures reproducibility, reduces
human intervention, and maintains operational consistency
by managing the lifecycle of the toolkit within a unified,
automated CI/CD framework.

IV. EXPERIMENTAL SETUP
A. Experimental Objectives

Our experiments evaluate CloudBot’s ability to automati-
cally deploy applications from repository to running infras-
tructure across different complexity levels. We assess three key
aspects: the accuracy of generated infrastructure specifications,
the success rate of actual deployments, and the efficiency of
the end-to-end pipeline. By comparing CloudBot against hand-
crafted baselines and measuring the contribution of individual
components, we quantify the system’s practical effectiveness
for automated cloud deployment.

B. Use Case Selection

We selected three representative applications that progres-
sively increase in complexity while covering diverse compu-
tational requirements and dependency patterns.

Word Count serves as our baseline case, processing plain
text files to generate token frequency statistics in JSON



format. This Python application has minimal dependencies and
represents simple data processing workloads common in cloud
environments.

Image Analysis introduces moderate complexity, requiring
computer vision libraries (OpenCYV, Pillow) to extract features
and generate classifications from image files. This case tests
CloudBot’s ability to identify and provision specialized depen-
dencies beyond standard Python packages.

Video Analysis represents our most complex scenario,
processing video clips to generate frame-level statistics using
multimedia tools (ffmpeg, OpenCV). This case requires both
Python libraries and system-level dependencies, challenging
CloudBot to handle multi-layered dependency resolution and
higher computational requirements.

C. Experimental Pipeline (Image Analysis Use Case)

A researcher supplies the URL of a GitHub repository
containing an image-analysis program but lacks local com-
pute. The CloudBot Runner receives the URL, invokes the
GitHub Analyst to clone and stage the project, and calls the
Cloud Architect to produce a structured prompt. The prompt
concatenates the project goal, entry command, runtime needs,
expected inputs/outputs, and AWS constraints extracted from
the repo. The Cloud Engineer (running on EC2; LLaMA
+ RAG via Ollama) embeds the knowledge base and AWS
best-practice references, retrieves context by cosine similarity,
and generates Terraform IaC in a single shot. The output is
cleaned, validated, and, if necessary, repaired against a ground-
truth baseline.

The Runner then initializes Terraform and deploys the
infrastructure described by the IaC into the AWS sandbox
for this use case, an EC2 instance suitable for the image-
analysis workload. It copies the application code from the
cloned repository to the instance and executes the analysis. On
completion, all artifacts prompts, retrieved context identifiers,
IaC (generated and validated), infrastructure logs, application
logs, metrics, timings, and instance metadata are written back
to the repository.

Figure 2 illustrates the complete experimental workflow,
showing how each test execution flows through six distinct
stages in a cyclic manner.

Stage 1: Repository Trigger. Each experimental run begins
when a repository URL is provided to the system, either
through automated triggers or manual invocation. This initiates
the complete deployment pipeline for the specified use case.

Stage 2: GitHub Actions/Local Runner (CloudBot Run-
ner). The orchestration layer executes the CloudBot pipeline
using either GitHub Actions for automated testing or a local
workstation for development experiments. This layer maintains
AWS credentials, manages workflow execution, and coordi-
nates the subsequent stages.

Stage 3: CloudBot Agent (Components).

« GitHub Analyst: clones the repository, creates a clean,

time-stamped workspace, and removes VCS state.

e Cloud Architect: inspects the staged repo and pro-

duces a structured deployment prompt. The prompt is

assembled by concatenating fields derived from the repo
(e.g., project goal, primary entry point/command, run-
time requirements, expected inputs/outputs, and cloud
constraints). To support this, repositories are expected to
expose these elements in a consistent layout (e.g., top-
level README with a “Project Goal” statement plus
basic run instructions).

Input: Repository README

Project Goal: Run a simple word count program in the
cloud

Output: Modified prompt

Please provide the terraform IaC to Run a simple
word count program in the cloud in AWS EC2

Cloud Engineer: runs in a prepared EC2 host (Ubuntu
24.04, cSa.2xlarge) as the generation environment.
Within Ollama, it uses LLaMA for generation and
mxbai-embed-large for the RAG. Project materials and
reference documents are cleaned, segmented, embedded
into vector representations, and matched to the prompt
via cosine similarity. LLaMA performs single-shot Ter-
raform IaC generation conditioned on the retrieved con-
text. A built-in preparation step isolates code from prose,
validates against a verified baseline, and repairs omissions
or inconsistencies; if divergence remains, the baseline IaC
is used.

RAG-Enhanced Generation

System Message:

You are a helpful assistant expert at extracting
useful information from text. Bring in extra
relevant information from outside the given
context.

Enhanced Prompt: Original query + retrieved context

Please provide terraform IaC to Run a simple word
count program in the cloud in AWS EC2

Relevant Context:

EC2 instances with user_data scripts, security
groups for SSH (port 22), t2.micro instances,
Amazon Linux 2 AMIs: ami-0c94855ba95c71c99, key
pairs for SSH access.

Example pattern:
resource "aws_instance" "app_server" {
ami = "ami-xxxxxxxx"
instance_type = "t2.micro"
key_name = "my-key"
vpc_security_group_ids = [aws_security_group.app.id
]
user_data = <<-EOF
#!/bin/bash
# Bootstrap script
EOF
}

QOutput: Generated Terraform configuration

Terraform configuration for word count program:

‘‘‘terraform

resource "aws_instance" "example_instance" {
ami = "ami-0c94855ba95c71c99"
instance_type = "t3.micro"
vpc_security_group_ids = [aws_security_group.

example.id]

key_name = "example_key"
user_data = <<-EOF
#!/bin/bash
echo 'name=My EC2 Instance’
EOF



resource "aws_security_group" "example" {
name = "my_ec2_instance"
description = "Allow SSH access"
vpc_id = aws_vpc.example.id

ingress {
from_port = 22
to_port = 22
protocol = "tcp"

cidr_blocks = ["0.0.0.0/0"]
}
}
resource "aws_vpc" "example" {
cidr_block = "10.0.0.0/16"

}

R

Code Extraction Process: Extract fenced blocks, apply
sanitization
Qutput: Sanitized Terraform file

resource "aws_instance" "example_instance" {
ami = "ami-0c94855ba95c71c99"
instance_type = "t3.micro"
vpc_security_group_ids = [aws_security_group.

example.id]

key_name = "example_key"
user_data = <<-EOF
#!/bin/bash
echo 'name=My EC2 Instance’
EOF

}

resource "aws_security_group" "example" {
name = "my_ec2_instance"
description = "Allow SSH access"

vpc_id = aws_vpc.example.id

ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
}

resource "aws_vpc" "example" {
cidr_block = "10.0.0.0/16"
}
Configuration Validation
Output: Validated Terraform configuration

provider "aws" {
region = "us-east-1"

}

resource "aws_instance" "my_ec2_instance" {
ami = "ami-08982f1c5b£f93d976"
instance_type = "t2.micro"
key_name = "cloudbot-eastl"
subnet_id = "subnet-017fca6bfc495ca34"
vpc_security_group_ids = ["sg-012239f5f2ffabel8"]
associate_public_ip_address = true
tags = { Name = "cloudbot" }
}

Stage 4: Terraform Runner. The validated IaC undergoes
deployment through the standard Terraform workflow (init,
plan, apply). All Terraform operations are logged to cap-
ture provisioning details, timing information, and any errors
encountered.

Stage 5: AWS Sandbox. The application executes on the
infrastructure defined by the generated IaC. The specific re-
sources vary by use case. For this image-analysis experiment,
the workload runs on an EC2 instance; for other use cases, the

IaC may provision different services. Each run uses a clean

environment, network access is restricted (e.g., SSH only), and
resources are destroyed on completion. The Runner transfers
the cloned project to the target and executes the workflow on
top of the deployed infrastructure.

Stage 6: Results Logging. The system collects and commits
back to the repository: generated and validated [aC, Terraform
logs, application outputs, timing measurements, and instance
metadata. These artifacts feed subsequent iterations and com-
parative analysis.

D. Experimental Variants

To isolate the contribution of different CloudBot compo-
nents and establish performance baselines, we compare three
variants for each use case.

Baseline (Hand-Crafted IaC). An expert manually writes
minimal Terraform code containing only the essential re-
sources needed for each application. This represents the ideal
target that CloudBot aims to match, establishing an upper
bound on infrastructure minimality and serving as the ground
truth for correctness evaluation.

Variant A (LLM-Only). We extract Terraform code from
raw LLM output and validate syntax using terraform
validate, but apply no semantic repairs. This variant is
not actually deployed; we only measure syntactic correctness.
Variant A quantifies the LLM’s baseline generation capability
and reveals common generation errors that require correction.

Variant B (CloudBot Complete). The full system executes
with validation and repair mechanisms enabled. Generated IaC
undergoes automated correction before deployment to actual
AWS infrastructure. This variant measures CloudBot’s end-
to-end success rate, deployment time, and resource efficiency,
demonstrating practical effectiveness.

Comparing these variants reveals: (1) the gap between raw
LLM output and deployable infrastructure (Baseline vs. Vari-
ant A), (2) the value added by validation and repair (Variant A
vs. Variant B), and (3) CloudBot’s ability to approach expert-
level infrastructure specifications (Variant B vs. Baseline).

E. Evaluation Metrics

We measure CloudBot’s performance across multiple di-
mensions to provide a comprehensive assessment of system
effectiveness.

Deployment Success Rate. The percentage of runs that
successfully provision infrastructure, execute the application,
and produce expected outputs without manual intervention.
This is our primary metric for practical usability.

Infrastructure Correctness. We compare generated Ter-
raform against baseline specifications, measuring: (1) presence
of all required resources, (2) correctness of resource configura-
tions, and (3) absence of unnecessary or redundant resources.

Syntax Validation Rate. The percentage of extracted IaC
files that pass terraform validate before any repairs
are applied, indicating raw LLM generation quality.
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Fig. 2. Experimental pipeline showing the cyclic workflow from repository trigger through deployment and result logging. Each experiment flows through
six stages: (1) repository trigger initiates the pipeline, (2) GitHub Actions or local runner executes the workflow, (3) CloudBot agents manage analysis and
generation tasks, (4) Terraform runner deploys infrastructure, (5) AWS sandbox provides the test environment, and (6) results logging records outcomes before

returning to the trigger for subsequent runs.

F. Experimental Configuration

All experiments use a standardized infrastructure configura-
tion to ensure reproducibility and fair comparison. Target in-
stances are AWS EC2 c5a.2xlarge running Ubuntu 24.04,
deployed in a single fixed AWS region. The LLM Host runs
on a separate EC2 instance serving models locally via Ollama
with a RAG knowledge base containing AWS documentation
and Terraform patterns. Each experimental run uses a fresh
instance that is destroyed immediately after completion.

G. Data Collection and Reproducibility

For each experimental run, we systematically archive: repos-
itory commit hash, constructed prompts, ext racted.tf and
validated.tf files, complete Terraform logs (init, plan,
apply, destroy), application outputs and error messages, timing
data for each pipeline stage, and instance metadata (ID, IP,
timestamps) with sensitive information redacted. Artifacts are
organized by use case and run identifier, enabling both au-
tomated analysis and manual inspection. This comprehensive
collection ensures experimental reproducibility and supports
detailed investigation of edge cases and failure modes.

V. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate CloudBot’s ability to generate deployable in-
frastructure code by comparing it against expert-crafted base-
lines across three use cases. Our evaluation addresses two key
questions: (1) Can CloudBot generate IaC that successfully
deploys and executes applications? (2) How closely does
CloudBot’s generated code match expert-written baselines in
terms of syntax, semantics, and functionality?

A. Deployment Success

CloudBot successfully generated and deployed infrastruc-
ture across all three use cases over ten independent runs each
(30 total deployments). Every generated Terraform configura-
tion passed validation, provisioned AWS EC2 infrastructure,
executed the target application, and produced expected out-
puts. This demonstrates CloudBot’s ability to reliably automate
the complete deployment pipeline from repository to running
application without manual intervention.



TABLE I
AVERAGE SIMILARITY SCORES WITH STANDARD DEVIATIONS (TEN RUNS)
COMPARING CLOUDBOT-GENERATED IAC TO EXPERT BASELINES.

Metric UC1 uC2 ucCs3

Syntax 0.225+0.052 0.295+0.113  0.294 + 0.083
Semantic 0.309 +0.099 0.431+£0.099  0.298 + 0.089
Functional ~ 0.183 +0.073  0.309 4 0.131 0.191 4+ 0.091

B. Similarity to Expert Baselines

While CloudBot consistently produces deployable infras-
tructure, we measure how closely its generated code matches
minimal expert-crafted baselines using three complementary
similarity metrics. Table I presents average similarity scores
with standard deviations across ten runs for each use case.
The standard deviations (ranging from 0.052 to 0.131) indicate
moderate variability in generation quality across runs, reflect-
ing the stochastic nature of LLM-based generation.

1) Syntax Similarity: Syntax similarity evaluates textual
structure, measuring overlap in tokens, keywords, and code
patterns. UC2 (Image Analysis) achieved the highest syntax
similarity (0.295), with UC3 (Video Analysis) nearly identical
(0.294). UC1 (Word Count) scored lowest (0.225), suggesting
CloudBot generates code with different textual structure than
the minimal expert baseline, despite functional correctness.
The moderate scores (22-30%) indicate that while CloudBot
produces valid Terraform syntax, the specific code organiza-
tion and resource declarations differ substantially from expert
implementations.

2) Semantic Similarity: Semantic similarity assesses con-
ceptual overlap in infrastructure resources, examining whether
configurations specify similar providers, resource types, vari-
ables, and architectural patterns. UC2 obtained the highest
semantic similarity (0.431), indicating stronger alignment with
expert-selected cloud services and configuration concepts.
UCI1 (0.309) and UC3 (0.298) showed moderate semantic
alignment, suggesting CloudBot identifies appropriate infras-
tructure components but may select different resource config-
urations or include additional services compared to minimal
baselines.

3) Functional Similarity: Functional similarity measures
how alike the actual provisioned deployments are, using
weighted features that emphasize critical components like
resource types and provider configurations. UC2 again scored
highest (0.309), while UC1 (0.183) and UC3 (0.191) scored
substantially lower. These scores indicate that CloudBot’s
generated configurations, while deployable and functional,
provision architecturally different infrastructure compared to
expert baselines. The gap between semantic and functional
similarity suggests that even when similar resources are spec-
ified, their actual configurations and relationships differ from
expert designs.

C. Understanding the Similarity Gap

The moderate similarity scores (18-43%) despite consistent
deployment success reveal an important characteristic of LLM-
based [aC generation: current models can produce working in-

frastructure but do not yet match the minimality and precision
of expert-crafted configurations. Analysis of generated code
shows that CloudBot tends to include additional resources,
more permissive security rules, and standard configurations
rather than the tightly-scoped minimal specifications in expert
baselines.

This gap represents both a limitation and an opportunity.
The limitation is that automated generation does not yet
achieve expert-level efficiency and minimality. The opportu-
nity is that CloudBot establishes a working baseline (20-43%
similarity with consistent deployment success) from which
future improvements can be measured. Prior to CloudBot, no
end-to-end system existed to automatically generate deploy-
able IaC from repository analysis, making even this moderate
similarity a meaningful step toward fully automated cloud
deployment.

1) UC2 Performance Advantage: UC2 consistently out-
performed UC1 and UC3 across all metrics. We attribute
this to two factors: First, image processing applications with
computer vision dependencies (OpenCV, Pillow) represent
common deployment patterns well-represented in cloud doc-
umentation and IaC examples that inform the LLM’s training
data. Second, UC1’s minimal requirements may have been
over-provisioned by the LLM generating more resources than
the tightly-scoped baseline, while UC3’s multimedia depen-
dencies (ffmpeg, opencv) introduced edge cases less common
in typical cloud deployments. The variation across use cases
highlights the influence of training data distribution on LLM
generation quality.

D. Metric Computation and Aggregation

Each similarity family produces multiple sub-metrics per
run. We report representative overall scores computed as
follows:

« Syntax Overall. The score balances breadth and local
structure:

Syntax Overall = 0.50 % token_cosine
+ 0.30 * keyword_Jaccard
+ 0.20 * 3-gram_Jaccard.

Edit distance and char-level diff are retained only as
diagnostics.

o Semantic Overall. The concept cosine over extracted
Terraform concepts is used as the representative semantic
score.

« Functional Overall. The weighted Jaccard over the
feature set serves as the representative functional score,
emphasizing resource types and providers.

Table II summarizes the representative scores and their
components.

Each use case consists of multiple independent runs (ten
in our experiments). For the tables in this section, we first
compute per-run overall scores (one per family), then take the
arithmetic mean across runs to obtain a single score per use
case and family. This produces compact, comparable numbers



TABLE II
REPRESENTATIVE SCORE REPORTED PER FAMILY AND ITS COMPONENTS.

Family Reported Overall (components)

Syntax Weighted blend: token cosine (50%), keyword Jaccard (30%),
3-gram Jaccard (20%).

Semantic  Concept cosine over extracted Terraform concepts.

Functional Weighted Jaccard over feature set (higher weights for resource

types/providers).

while preserving the underlying detail in the supplemental
report. Complete per-run metrics and detailed sub-scores are
available in our repository for reproducibility.

E. Implications

These results demonstrate that CloudBot successfully auto-
mates end-to-end cloud deployment while generating infras-
tructure code that achieves moderate similarity (20-43%) to
expert baselines. The consistent deployment success validates
CloudBot’s practical utility, while the similarity gap identifies
clear directions for improvement: reducing over-provisioning,
matching expert minimality, and better handling edge cases in
dependency specifications. As the first system to provide fully
automated deployment from repository to execution, CloudBot
establishes both a working solution and quantitative baselines
for measuring future progress in LLM-based infrastructure
automation.

VI. DISCUSSION
A. Key Findings

CloudBot successfully automates end-to-end cloud deploy-
ment, achieving consistent success across all 30 experimental
runs, thus answering RQI in Section 1 affirmatively. The
moderate similarity scores (18-43%) compared to expert base-
lines quantify the quality gap (RQ2 in Section 1), reveal-
ing that current LLMs generate working but non-minimal
infrastructure. UC2’s superior performance across all metrics
suggests that generation quality correlates with training data
prevalence: applications with well-documented deployment
patterns benefit from better LLM generation.

Analysis reveals consistent over-provisioning patterns where
CloudBot includes standard configurations, more permissive
security rules, and additional resources compared to minimal
expert baselines. The validation and repair mechanism (RQ3
in Section 1) bridges the gap between raw generation and
deployability, with the 0.6 similarity threshold empirically
balancing correction effectiveness with preservation of valid
content.

B. Practical Implications and Limitations

CloudBot provides immediate utility for research applica-
tions, prototyping, and educational environments by reducing
deployment time from hours to minutes without requiring
deep cloud expertise. The multi-agent architecture effectively
decomposes complex deployment into specialized subtasks,
mirroring expert workflows. However, production deployments

requiring minimal resources or strict security still benefit from
expert review.

Key limitations include targeting single-VM deployments
on AWS only, three use cases that may not capture full
application diversity, and reliance on a single LLM. Similarity
metrics capture structural overlap but may not fully reflect
operational quality like performance or cost efficiency. The
RAG knowledge base, while comprehensive for AWS, may
bias toward specific patterns.

C. Future Directions

Promising directions include improving generation mini-
mality through fine-tuning on minimal IaC examples, extend-
ing to multi-service architectures and cross-cloud support,
incorporating user feedback for iterative refinement, enhancing
security through policy-based validation, and adding cost opti-
mization objectives. CloudBot’s modular architecture supports
these extensions through its loosely-coupled components and
expandable RAG knowledge base.

VII. CONCLUSION

CloudBot automates end-to-end cloud deployment from
GitHub repositories to running infrastructure through an in-
tegrated pipeline combining code analysis, LLM-based IaC
generation, validation, deployment, and execution. Our evalu-
ation demonstrates consistent deployment success across text
processing, image analysis, and video processing applications,
with similarity scores of 18-43% to expert baselines indicating
that current LLMs produce working but non-minimal infras-
tructure.

CloudBot makes three key contributions: providing the
first complete end-to-end automation system, demonstrating
effective multi-agent architecture for cloud deployment, and
establishing quantitative baselines for measuring LLM-based
infrastructure generation. Our results definitively answer the
research questions: LLMs can generate deployable IaC end-to-
end (RQ1), automated generation achieves 20-43% similarity
to expert baselines (RQ2), and intelligent validation mecha-
nisms bridge the generation gap with over-provisioning as the
primary limitation (RQ3).

As LLMs continue improving and training data expands,
the similarity gap will narrow. CloudBot’s contribution lies
in demonstrating current feasibility while establishing the
framework and baselines for measuring future progress. The
modular architecture, comprehensive evaluation methodology,
and quantitative baselines provide a foundation for systematic
advancement toward expert-level automated infrastructure gen-
eration, bringing seamless code-to-cloud deployment closer to
reality.
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