
LPOD: A Local Path Based Optimized Scheduling Algorithm for
Deadline-Constrained Big Data Workflows in the Cloud

Changxin Bai∗, Shiyong Lu∗, Ishtiaq Ahmed∗

Department of Computer Science
Wayne State University∗

Detroit, Michigan, USA
Email: {changxin, shiyong, ishtiaq}@wayne.edu∗

Dunren Che†

Department of Computer Science
Southern Illinois University†

Carbondale, Illinois, USA
Email: dche@cs.siu.edu†

Aravind Mohan‡

Department of Computer Science
Allegheny College‡

Meadville, Pennsylvania, USA
Email: amohan@allegheny.edu‡

Abstract—List based scheduling algorithms have been
proven an optimistic strategy with a shorter response time
to generate feasible solutions for the workflow scheduling
problem. Data-intensive and computation-intensive workflow
applications have different characteristics in terms of the ratio
between data transfer time and task execution time. Workflow
scheduling algorithms in a cloud-based environment should
adequately consider the characteristics of the underlying cloud
platform such as the on-demand resource provisioning strategy,
the practically unlimited compute capacities, the booting times
of virtual machines, the homogeneous network and the pay-as-
you-go price model to produce an optimal scheduling solution
within the deadline constraint of a given workflow. In this
paper, a path based scheduling algorithm, named LPOD, is
proposed to find the best workflow schedule solution with
minimum monetary cost in a cloud computing environment.
A series of case studies have been carefully conducted using
synthetic workflows based on DATAVIEW, which is a popular
open-source big data workflow management system. The ex-
perimental results show that the proposed algorithm is efficient
and can generate better workflow schedules than the state-of-
the-art algorithms such as IC-PCP and SGX-E2C2D.

Keywords-Workflow; Cloud; Deadline Constrained; Schedul-
ing; Optimization;

1. INTRODUCTION

Workflow as a parallel high-performance computing
model has been broadly studied and used to orchestrate
different computation tasks involving complex data depen-
dencies in various research domains such as astronomy [1],
biology [2] [3], seismology [4], medical care [5] [6], and
big data analysis [7]. A workflow is typically represented as
a directed acyclic graph (DAG), in which nodes represent
tasks and edges represent data dependencies between two
consecutive tasks. Modern Workflow management systems
such as DATAVIEW [8] facilitate and automate the com-
plex execution process of a workflow on top of a high-
performance computing platform through a user-friendly
interface.

In the last few years, cloud computing has become a
promising paradigm over the Internet for scientific comput-
ing applications. Cloud computing comes with numerous
benefits: elasticity, the pay-as-you-go pricing model, prac-

tically unlimited capacity of compute resources, etc., which
are particularly suitable for exploratory scientific comput-
ing applications. Scientific workflow management systems
[8] have started to embrace cloud computing, especially
Infrastructure-as-a-Service (IaaS), as their new underlying
computing platforms to deliver high-performance computing
capabilities to scientific applications. Virtual machine (VM)
instances are the fundamental compute infrastructure to
be leveraged by scientific workflow systems to facilitate
scientific workflow applications.

Workflow scheduling is the most challenging core module
in any workflow management systems [9] [10]. Workflow
scheduling by its nature is DAG scheduling, which is a well-
known NP-complete [11] problem, even in the simplest case,
where tasks are assigned to an arbitrary number of resources.
Given a workflow, an ideal scheduling algorithm is expected
to generate a schedule solution of minimal monetary cost
and minimal makespan of the workflow, which is apparently
a paradox. How to balance between makespan and execution
cost is the key research issue in workflow scheduling.
This issue has been studied in respective cases with differ-
ent focuses: the deadline-constrained workflow scheduling
[12], budget-constrained workflow scheduling [13], and the
deadline-budget optimization workflow scheduling [14] [15].
This paper focuses on deadline-constrained scheduling of
workflows in an IaaS cloud computing environment. Given
the workflow execution deadline, δ, our scheduling objective
is to find a workflow schedule that results in the min-
imum execution cost. In order to achieve this objective,
our scheduling algorithm needs to address the following
issues: Given a workflow, how many VM instances are
needed for its execution? When should these VM instances
be provisioned and deprovisioned? How do we find the
workflow schedule, sch, that minimizes the monetary cost?
When does each of the workflow task start and finish?

In this paper, we propose a path-based scheduling algo-
rithm that decides whether two consecutive tasks in a path
of a given workflow should be scheduled to the same VM
instance by a holistic consideration of the tasks’ execution
times, data transfer times between the tasks, and the billing

cycle of the underlying IaaS cloud platform.
We make the following contributions via the work pre-

sented in this paper:
1) We propose a path-based workflow scheduling algo-

rithm that generates workflow schedules of minimum
execution cost on AWS EC2 (an IaaS cloud service).

2) The proposed algorithm is implemented and integrated
into a real popular workflow system, DATAVIEW.

3) We conducted systematic experiments and the ac-
quired results showed that LPOD outperforms the
state-of-the-art algorithms, IC-PCP [16] and SGX-
E2C2D [17], by delivering more cost-efficient sched-
ules for big data workflows.

This paper is structured as follows. Section 2 reviews
related work regarding workflow scheduling. Section 3 intro-
duces basic definitions to formalize the deadline-constrained
workflow scheduling problem. Section 4 describes our
scheduling algorithm, LPOD, in detail. The experimental
results are presented and discussed in Section 5. Finally,
section 6 concludes this paper.

2. RELATED WORK

Workflow scheduling is a well-known complex prob-
lem. Heuristic-based and meta-heuristic-based approaches
have been studied for the workflow scheduling problem.
Popular meta-heuristic-based approaches include particle
swarm optimization (PSO) [18] and genetic algorithms (GA)
[19]. Several heuristic-based algorithms [20] [21] [22] [23]
have been proposed for workflow scheduling in the cloud
computing environment. However, existing approaches did
not adequately consider the important characteristics of the
cloud computing environment.

Saeid et al. [16] proposed a deadline-constrained work-
flow scheduling algorithm by simply assigning a whole
partial critical path to a single VM instance to minimize the
data transfer time between consecutive tasks. This algorithm
does not explore the possibility of assigning the tasks from
one path to multiple VM instances in search for potentially
better schedule solutions. Another drawback is that this
algorithm does not consider the time of a provisioned VM
instance completing the transfer of all the output data to the
local storage of the VMs executing the child tasks, before
it is deprovioned. This is impractical during the workflow
execution life time.

Jyoti and Deo Prakash [24] proposed a just-in-time
scheduling strategy that starts with a pre-processing step that
combines pipelined tasks into a single task and then assigns
such combined mega task to a single VM instance. Different
from most other workflow scheduling algorithms in which
each task is only visited once, this algorithm needs to visit
each task twice (in the pre-processing stage and schedule
generation stage). What’s more, their method may result in
a schedule less cost-efficient than a mapping scheme that
assigns pipelined tasks to multiple VM instances.

The algorithm proposed by Xiumin et al. [25], extended
from HEFT [26], utilizes a two-stage procedure to mini-
mize execution cost and workflow makespan simultaneously.
However, they do not consider a VM instance’s booting time
and the actual data transfer time between consecutive tasks.
This algorithm selects the final scheduling solution from K
identified best solutions. However, how to decide the best
value for K is not addressed. Meanwhile, evaluating the K
scheduling solutions in order to decide the final best one
renders the scheduling algorithm itself inefficient.

3. PROBLEM DESCRIPTION

In this section, we introduce a few definitions and for-
malize the deadline-constrained workflow scheduling prob-
lem. The goal is to find a workflow schedule sch for a
given workflow W that minimizes the monetary cost of the
workflow’s execution in the cloud under a given deadline
constraint δ. The assumption is that each task is assigned
to one single VM instance and each VM instance can only
run one single task at a time (no parallelism within one VM
instance).

In this model, we consider the following aspects of
cloud computing environment and of a given workflow:
the capacity of each VM type, the execution time of each
workflow task with each VM type, the data transfer rate and
price in the cloud, the sizes of data products for a workflow
and the booting times of VM instances. We first model
the notions of big data workflow and its cloud computing
execution environment as follows.

Definition 3.1 (Cloud Computing Environment): A cloud
computing environment is modeled as an nine-tuple
C(VMT, VMC, V Price, V MI, Type,DTR,DPrice,
BootDelay), where:

• VMT is a set of VM types in the environment, and
the kth VM type is denoted as VMT k.

• VMC : VMT → R+ is the VM capacity function,
and VMC(VMT k) returns the computation speed of
VMT k in terms of Million Instructions Per Second
(MIPS). R+ is the set of all positive real numbers.

• V Price : VMT → R+ is the VM price function, and
V Price(VMT k) returns the monetary cost per each
billing cycle l for using a VM instance of type VMT k.

• VMI is a set of VM instances, an individual VM
instance is denoted as VMIm.

• Type : VMI → VMT is the VM type function,
and Type(VMIm) returns the VM type of instance
VMIm.

• DTR : VMI × VMI → R+ is the data transfer rate
function. DTR(VMIm1, V MIm2) returns the network
bandwidth between instances VMIm1 and VMIm2.

• DPrice : VMI × VMI → R+ is the data transfer
price function. DPrice(VMIm1, V MIm2) returns the

price in dollars per MBytes for transferring data from
VMIm1 to VMIm2.

• BootDelay is the delay of a VM instance before it
becomes available after being provisioned.

Definition 3.2 (Big Data Workflow): A Big data workflow
is modeled as a four-tuple W (T,D, TSize,Dsize), where:
• T is a set of tasks.
• D ⊆ T ×T is a set of data dependency edges between

tasks. We use Di,j to denote the data product that is
produced by ti and consumed by tj .

• TSize : T → R+ is the task size function, and
TSize(ti) returns the size of task ti in terms of million
instructions.

• DSize : D → R+ is the data product size function,
and DSize(Di,j) returns the size of data product Di,j

in terms of MBytes.

For simplicity of presentation, we introduce two distin-
guished tasks, tentry and texit to each workflow W such that
tentry is connected to each entry task in W (tasks that have
no parents), and texit is connected to each exit task in W
(tasks that have no children). Then, we introduce a workflow
graph G to model the performance properties of workflow
W under a particular cloud computing environment C as
follows.

Definition 3.3 (Workflow Graph): Given a cloud comput-
ing environment C and workflow W , a workflow graph is
formalized as a five-tuple G(T,D,ET,DTT,DTC), where
• T =W.T

⋃
{tentry, texit}. Here W.T denotes the task

set of W .
• D = W.D

⋃
Dentry

⋃
Dexit. Dentry = {Dentry,i |

ti ∈ entrytasks(W)}, and Dexit = {Dj,exit | tj ∈
exittasks(W)}.

• ET : T × VMT → R+ is the task execution time
function, and ET (ti, V MT k) returns the execution
time of ti on a VM instance of type VMT k, which
is defined as:

ET (ti, V MT k) =
TSize(ti)

VMC(VMT k)
(1)

• ET : T → R+ is the average task execution time
function, which is defined as:

ET (ti) =

∑|VMT |
k=1 ET (ti, V MT k)

|VMT |
(2)

• DTT : D × VMI × VMI → R+ is the data trans-
fer time function, and DTT (Di,j , V MIm1, V MIm2)
returns the time for transferring Di,j from VMIm1 to
VMIm2, which is defined as:

DTT (Di,j , V MIm1, V MIm2)

=

{
0, if m1=m2

DSize(Di,j)

DTR(V MIm1,V MIm2)
otherwise

(3)

• DTT : D → R+ is the average data transfer time
function, and DTT (Di,j) returns the average transfer
time of data from ti to tj , which is defined as:

DTT (Di,j) =
DSize(Di,j)

DTR
(4)

where DTR, the average data transfer rate among C,
is defined by:

DTR =

∑
v1∈VMI,v2∈VMI,v1 6=v2 DTR(v1, v2)

|VMI| × (|VMI| − 1)/2
(5)

• DTC : D × VMI × VMI → R+ is the
data transfer monetary cost function, and
DTC(Di,j , V MIm1, V MIm2) returns the monetary
cost of transferring Di,j from task ti running in VM
instance VMIm1 to task tj running in VM instance
VMIm2. It is defined as:

DSize(Di,j)×DPrice(VMIm1, V MIm2) (6)

Next, we model the notion of a workflow schedule, which
will be produced by a particular workflow scheduler (a.k.a.
workflow planner) in a workflow system, such as the one
proposed in the next section.

Definition 3.4 (Workflow Schedule): Given a cloud
computing environment C and a workflow W , a
workflow schedule is modeled as a seven-tuple
sch(T, V MI,M,AST,AFT, Prov,Deprov), where:
• T is the set of tasks in workflow W , thus T =W.T .
• VMI is the set of VM instances in C, thus VMI =
C.VMI .

• M : T → VMI is a task assignment function, and
M(ti) is the VM instance that task ti is assigned to.

• AST : T → R+: is an actual start time function, and
AST (ti) returns the actual start time of task ti on VM
instance M(ti).

• AFT : T → R+ is an actual finish time function, and
AFT (ti) returns the actual finish time of task ti on
VM instance M(ti).

• Prov : VMI → R+ is a VM instance provisioning
time function, and Prov(VMIm) returns the time that
VM instance VMIm is to be provisioned.

• Deprov : VMI → R+ is a VM instance deprovi-
sioning time function, and Deprov(VMIm) returns the
time that VM instance VMIm is to be deprovisioned.

The total execution time and monetary cost of a schedule
sch are defined by workflow makespan and workflow cost,
respectively, as follows.

Definition 3.5 (Workflow makespan WMS): Given a
workflow schedule sch, the makespan of workflow sch is
defined as:

WMS(sch) = sch.AFT (sch.texit) (7)

Definition 3.6 (Workflow cost WC): Given a workflow
schedule sch, the total execution monetary cost of sch in
cloud computing environment C is defined as:

WC(sch) =
∑

v∈VMI

V Price(Type(v))

∗ dDeprov(v)− Prov(v)
l

e (8)

The above definition assumes a zero data movement
monetary cost among VM instances, which is the case for
cloud services such as Amazon EC2. The above definition
also rounds up VM instance usage to its nearest full billing
cycle. Finally, our scheduling problem can be formulated as
follows.

Definition 3.7 (Deadline-constrained Workflow Schedul-
ing Problem): Given a workflow W , an IaaS computing
environment C, and a deadline δ, the deadline-constrained
workflow scheduling problem is to find the optimal workflow
schedule schopt that minimizes the monetary cost of running
workflow W within deadline δ:

schopt = argmin
sch

WC(sch)

subject to WMS(sch) 6 δ
(9)

4. THE PROPOSED WORKFLOW SCHEDULING
ALGORITHM

This scheduling algorithm attempts to minimize the to-
tal execution cost by minimizing the cost of each partial
path. Our approach to the deadline constrained scheduling
problem consists of two phases: the partial path construction
phase and the resource selection phase. In the first phase, a
workflow graph G is partitioned into several partial paths.
Then, in the second phase, a path based optimization algo-
rithm is employed to find a cost-minimized assignment for
each path.

This section first introduces fundamental definitions uti-
lized in the proposed algorithm. Then, the algorithm is
introduced followed by a time complexity analysis of the
algorithm. Finally, an illustrative example demonstrates how
the algorithm works.

A. Basic Definitions

The priority rank of a task is introduced to measure the
length of the partial path from a task to the exit node texit.
This rank will used by the proposed algorithm to divide a
workflow graph G into partial paths.

Definition 4.1 (Priority Rank Pri): Given a workflow
graph G, the priority rank of a task ti is defined as follows:

Pri(ti) =

{
ET (ti), if ti = texit

ET (ti)+ max
tj∈(ti)•

(DTT (Di,j)+Pri(tj)), otherwise

(10)
where (ti)

• denotes the child tasks of ti in G.

The minimum execution time of a task is defined as the
execution time of the task on an instance of the fastest VM
type in C.

Definition 4.2 (Minimum Execution Time MET): Given
a workflow graph G and a cloud computing environment C,
the minimum execution time of a task ti is defined as:

MET (ti) =
|VMT |
min
k=1

ET (ti, V MT k) (11)

The estimated execution time of a task is the task’s
running time on an assigned instance of a VM type in C.

Definition 4.3 (Estimated Execution Time ET ∗): Given
a workflow graph G, a cloud computing environment C and
a VM assignment function M , the estimated execution time
of a task ti is defined as:

ET ∗(ti) =

{
MET (ti), if M(ti) = null

ET (ti, Type(M(ti))), otherwise
(12)

B. The Proposed Algorithm LPOD

Algorithm 1 represents the main steps of the LPOD algo-
rithm for scheduling a workflow. The algorithm calculates
the priority rank for each task and sorts all tasks in the list
tlist in decreasing order of their priority ranks (line 2). Line
3 computes the earliest start time (EST) of each task. For
task tentry, the EST is set to 0, and the EST s for other
tasks are calculated as follows:

EST (ti)← max
tp∈•(ti)

(EST (tp) + ET ∗(tp) +DTT (Dp,i))

(13)
where •(ti) denotes the parent tasks of ti in G. Line 4
computes the latest finish time (LFT) of each task with
LFT (texit) set to δ. The LFT s of other tasks are computed
by:

LFT (ti)← min
tc∈(ti)•

(LFT (tc)− ET ∗(tc)−DTT (Di,c))

(14)
After that, the (main) algorithm calls Algorithm 2 to con-
struct all the partial paths stored in the list, PP . Lastly,
Algorithm 3 is called to assign each partial path to a set
of appropriate VM instances assuring minimum cost for the
tasks on each path, resulting in a workflow schedule sch.

1) Partial Paths Construction: Algorithm 2 constructs
partial paths based on the priority rank of each task com-
puted by Eq. (10), starting from task texit recursively
(backward). A temporary list, cp, is created to hold the
tasks in a partial path (line 3). The task with the highest
priority rank is first selected from tlist, added into cp and
then removed from tlist (lines 4 − 5). Afterwards, via the
while loop, the algorithm constructs each partial path with
a depth-first search (lines 6 − 10). Once a path is found, it
is added into PP (line 11).

2) Paths Assignment: Algorithm 3 takes all the paths
identified by Algorithm 2 as input, and sequentially sched-
ules all the paths. For each path Pi = [t1, . . . , tn], we use
a two-phase procedure to schedule the tasks of Pi to a set
of VM instances. The first phase is to allocate a prefix of
Pi, [t1, . . . , tlj], to existing VM instances, with each task in
the prefix possibly assigned to either the same or different
VM instances (lines 1 − 16). Algorithm 4 is called in the
second phase (to be elaborated in the next section) to assign
[tlj+1, . . . , tn] to new VM instances (line 17). Each assigned
VM instance, VMIi, has two attributes in the scheduling
algorithm: the available time point vavat and the leftover
time in the current billing cycle vleft, which are used to
identify the free computing resource for an unassigned task
during the first phase. Three conditions will be checked (line
4) to decide whether a task can be assigned to an existing
VM instance with leftover time available:

• The EST of a task should be after a VM instances
available time point.

• The leftover time of the VM instance should be long
enough to finish the task.

• The task should be finished before its latest finish time.

The algorithm starts from the first task in Pi. Once a task is
assigned to an existing VM instance, the workflow schedule
sch and the two attributes of the VM instance are updated
(line 7). The length of the prefix, lj, is also updated (line 8).
Then the next task is tried to be assigned in the same logic.
This process stops until a task in Pi cannot be assigned to
an existing VM instance (lines 13 − 15). Once all tasks in
a path Pi are scheduled sequentially, the actual start time
and actual finish time can be decided. Then the EST of
ti is updated with the actual start time of ti and the LFT
of ti is updated with the actual finish time (lines 19− 20).
The algorithm then updates the EST of each unassigned
succeeding task tc of ti (line 21) using Eq. (13) and updates
LFT of each unassigned preceding task tp of ti (line 22)
using Eq. (14).

3) Single Path Assignment: Algorithm 4 takes a path,
P = [t1, · · · , tn], as input and schedules the tasks of
the path on a set of VM instances with the objective of
minimizing the total execution cost of the whole path by
using a dynamic programming strategy to assign a set of
possible VM instances (or only one instance, which is a
special case) to it. In contrast to ICPCP and SGX-E2C2D,
which assign a whole path to one single VM instance,
this algorithm explores the possibility to assign a path
to multiple VM instances, resulting an optimized VM
assignment solution for a single path. The possible VM
instance assignment for the current task ti is based on its
direct parent task ti−1’s possible VM instance assignment
by considering the leftover time tleft for current billing
cycle of the VM instance. Specifically, this strategy is
implemented based on a matrix, represented as a table

TB. Each solution is represented as a tuple in TB. It is
based on the recurrence relationship in which a solution
to a partial path [t1, · · · , ti] is based on a solution to its
prefix [t1, · · · , ti−1]. While t1 is always assigned to a new
VM instance (lines 2 − 7), the main point is to decide
whether a new VM instance needs to be assigned to ti.
This depends on the temporal assignment of [t1, · · · , ti−1]
(lines 8− 18). More specifically, TB stores a list of tuples
(id, t, tst, tft, acccost, tleft, idref,maxedge, V Mtype)
computed for each task ti in P , resulting in one or multiple
tuples for ti. Each tuple of t1 is calculated by tentatively
assigning an instance of each VM type within its LFT and
inserted into TB (lines 3 − 7). Except for t1, each tuple
of ti is computed based on a tuple of ti−1. Let pt be the
tuple of ti−1 based on which a new tuple nt of ti is being
computed. The attributes of nt in table TB are:
• id is a unique identifier for each tuple, which is

automatically generated by the function genID();
• t stores the information of task ti in path P .
• tst stores the temporary actual start time of task ti. We

set tst to BootDelay if nt.t = t1 ; otherwise tst is
computed by:{
max(EST (ti), pt.tft), if nt.V Mtype = pt.V Mtype

max(EST (ti), pt.tft) +DTT (Di−1,i), otherwise
(15)

• tft stores the temporary actual finish time of task ti,
which is computed by:

nt.tft← nt.tst+ ET (ti, V Mtype(ti)) (16)

• acccost stores the temporary accumulated cost from the
first task in P to task ti. We differentiate three cases:
If nt.t = t1 (case 1), acccost is computed by:

nt.acccost← dnt.tft
l
e×V Price(VMtype(ti)) (17)

Otherwise, if nt.V Mtype = pt.V Mtype (case 2), then
aacost is computed by:

pt.acccost+


0, if nt.tft ≤ pt.tft+ pt.tleft

dnt.tft−pt.tleftl e × V Price(VMtype(ti)),

otherwise
(18)

Otherwise, if nt.V Mtype 6= pt.V Mtype (case 3), then
aacost is computed by

nt.acccost← pt.aaccost+ dET (ti, V Mtype(ti))

l
e

× V Price(VMtype(ti)) (19)

• tleft stores the leftover time in the current billing cycle
of the assigned VM instance. We have three cases. If
nt.t = t1 (case 1), then tleft is calculated by:

nt.tleft← dnt.tft
l
e × l − nt.tft (20)

Otherwise, if nt.V Mtype = pt.V Mtype (case 2), then
tleft is computed by:
pt.tft+ pt.tleft− nt.tft,

if nt.tft ≤ pt.tft+ pt.tleft

dnt.tft−pt.tleftl e × l − (nt.tft− pt.tleft), otherwise
(21)

Otherwise, if nt.V Mtype 6= pt.V Mtype (case 3), then
tleft is calculated by:

nt.tleft← dnt.tft
l
e × l − nt.tft (22)

• idref ← pt.id, that is, it stores the id of the tuple of
ti−1, the direct parent of task ti in the partial path P ,
based on which the current tuple of ti is calculated.

• maxedge stores the largest data transfer time from ti
to its direct children, which is computed by:

nt.mexedge← max
tc∈(ti)•

DTT (Di,c) (23)

• VMtype stores the VM type that is assigned to ti
temporarily in the algorithm.

If the child task is assigned to a different VM, the current
VM can only be deprovisioned after all the output data has
been transferred to the VM running the child task. It is
not necessary for the VM executing the child task to be
active when the input data files are being transferred to the
corresponding storage volume with the isolated lifetime of
Elastic Block Store (EBS) [27]. In this case, only the data
transfer time from one VM instance executing a task to other
VM instances running the child tasks is included in the total
billing cycles. Let pret be the tuple containing the minimal
accumulated cost to execute tn in the path P (line 19). The
workflow schedule sch is updated based on the attributes in
pret (line 20). Then the backtracking strategy is used based
on TB to decide the tuple of tn’s parent task denoted by
ct. If the VM types in pret and ct are of the same type,
the provisioning time of VM instance in pret needs to be
updated (lines 24 − 26). When the VM types in pret and
ct are different, the provisioning time of the two VM types
are updated sequentially (lines 27− 41) by considering the
tuple pt calculated on ct with two cases (lines 31− 36). In
this way, the optimal VM instance that is assigned to each
task is determined. A special case is that if there is one task
in P , then the provisioning time of the VM instance needs
to be updated by the actual start time minus the VM delay
time (lines 44− 46).

C. Time complexity

A workflow graph G with n tasks and e edges is inputted
into the LPOD algorithm. The maximum number of depen-
dencies in G is (n−1)(n−2)

2 . In order to calculate all the
partial critical paths and initialize the EST and LFT for
each task, all the nodes and edges are visited once and the
complexity is O(n+ e).

Figure 1: A sample workflow graph with priority ranks on
nodes and average transfer times on edges.

Another part is the procedure AssignPath, which as-
signs a prefix of a partial path to those VM instances
with sufficient leftover time. Suppose that the maximum
number of existing instances is m, the complexity of the
assignment process is expressed as O(m × n). The last
part is to assign the suffix of the partial path to a set of
feasible VM instances with the minimum cost. It uses the
dynamic programming strategy by assigning each VM type
for each task within the LFT , and the maximum number
of task in a path is n, so the complexity of this process is
O(n× |VMT |2 ∗ δ). Overall, the complexity for the LPOD
is O(n+ e) +O(m× n) +O(n× |VMT |2 ∗ δ) ' O(n2).

Algorithm 1: Workflow Scheduling Algorithm
Input : A workflow graph G(T,E) and deadline δ
InOut: A workflow schedule sch

1 sch← ∅;
2 tlist← the list of tasks in G in descending order of priority ranks;
3 EST (tentry)← 0 and compute EST for other tasks;
4 LFT (texit)← δ and compute LFT for other tasks ;
5 PP ← FindAllPcps(tlist);
6 PathsAssignment(PP ,sch);

D. An illustrative example

A sample workflow is used to illustrate how the algorithm
works for different task execution times in three types of
VM computing services. We assume three types of VMT
in this case (more types may be used with a specific cloud
provider). The billing cycle of current computing services
is set to 10, the cost is 5, 2 and 1 for VMT 1, VMT 2 and
VMT 3, respectively. The delay of a VM instance is set to
1, and the deadline for the workflow is 50.

When the local path optimized scheduling algorithm,
i.e., Algorithm1 is called, for the sample workflow of
Fig. 1, the EST and the LFT for each task are cal-
culated at the initial step in Table I. All the partial

Algorithm 2: FindAllPcps
Input : A sorted task list tlist = [t1, · · · , tn]
Output: A path list PP

1 PP ← ∅ ;
2 foreach ti in tlist do
3 cp← ∅ ;
4 cp.add(ti);
5 tlist.remove(ti);
6 while ti has children in tlist do
7 ti ← t′is first child in tlist ;
8 cp.add(ti);
9 tlist.remove(ti);

10 end
11 PP.add(cp);
12 end
13 Return PP ;

Algorithm 3: PathsAssignment
Input : A path list PP = [P1, · · · , Pm]
InOut : A workflow schedule sch

1 foreach Pi = [t1, · · · , tn] in PP do
2 lj ← 0;
3 foreach tj in [t1, · · · , tn] do
4 found← false ;
5 foreach VMi in VMI do
6 if VMi.vavat ≤ EST (tj) and

VMi.vleft ≥ ET (tj , T ype(VMi)) and
LFT (tj) ≥ EST (tj)+ET (tj , T ype(VMi)) then

7 sch.T.insert(tj);
sch.AST.insert(tj , EST (tj));
aft← EST (tj) + ET (tj , T ype(VMi))
sch.AFT.insert(tj , aft);
sch.M.insert(tj , V Mi);
VMi.vavat← EST (tj) + ET (tj , T ype(VMi));
VMi.vleft← VMi.vleft− ET (tj , T ype(VMi));

8 lj ← j;
9 found← true;

10 break;
11 end
12 end
13 if found == false then
14 break;
15 end
16 end
17 AssignPath([tlj+1, · · · , tn], sch) ;
18 foreach tj ∈ Pi do
19 EST (tj)← sch.AST (tj);
20 LFT (tj)← sch.AFT (tj);
21 update EST for all successors of tj according to Eq. (13);
22 update LFT for all predecessors of tj accoring to Eq. (14);
23 end
24 end

paths (t2 → t6 → t9; t3; t1→ t4 → t7 and t5 → t8) are
constructed based on the priority rank of each task. Next,
the algorithm PathsAssignment is called to assign VM
instances to each partial path.

The PathsAssignment algorithm starts with the first
path of the paths list, which is t2 → t6 → t9. For this path,
a table is created to calculate the lowest accumulated cost
at the last task, from which a path assignment can be traced
back. The algorithm assigns each task in this path to VMT 2,
VMT 1 and VMT 1. The next step updates the EST s of

Algorithm 4: AssignPath
Input : A path P = [t1, · · · , tn]
InOut : A path schedule sch

1 TB ← ∅;
2 foreach VMTk in VMT do
3 create a new tuple nt; nt.id← genID(); nt.t← t1;

nt.tst← BootDelay; nt.tft is calculated by Eq. (16);
nt.acccost is calculaed by Eq. (17); nt.tleft is calculated by
Eq. (20); nt.idref ← NULL; nt.maxedge is calculated by
Eq. (23); nt.V Mtype← VMTk;

4 if nt.tft ≤ LFT (t1) then
5 TB.insert(nt)
6 end
7 end
8 foreach ti in [t2, · · · , tn] do
9 foreach tuple pt of ti−1 in TB do

10 foreach VMTk in VMT do
11 create a new tuple nt; nt.id← genID(); nt.t← ti;

nt.tst is calculated by Eq. (15); nt.tft is calculated
by from Eq. (16);

12 if nt.tft ≤ LFT (ti) then
13 nt.acccost is calculaed by Eq. (18) or Eq. (19);

nt.tleft is calculated by Eq. (21) or Eq. (22);
nt.idref ← pt.id; nt.maxedge is calculated
by Eq. (23); nt.V Mtype← VMTk;

14 TB.insert(nt)
15 end
16 end
17 end
18 end
19 pret← select ∗ from TB where t = tn order by acccost limit 1;
20 preindex← pret.idref ; sch.T.insert(tn);

sch.AST.insert(tn, pret.tst); sch.AFT.insert(tn, pret.tft);
preVM ← initialize a new instance from pret.V Mtype;
preVM.vavat← pret.tft; preV M.vleft← pret.tleft;
sch.V MI.insert(preV M); sch.M.insert(tn, preV M);
sch.Prov.insert(preVM, pret.tst);
sch.Deprov.insert(preV M, (pret.tft+ pret.maxedge));

21 foreach ti in [tn−1, · · · t1] do
22 ct← select ∗ from TB where id = pret.idref ;
23 sch.AST.insert(ti, ct.tst); sch.AFT.insert(ti, ct.tft);

sch.T.insert(ti);
24 if ct.V Mtype == pret.V Mtype then
25 sch.M.insert(ti, preV M);

sch.Prov.update(preVM, ct.tst);
26 end
27 else
28 cV M ← initialize a new instance from ct.V Mtype;

cV M.vavat← ct.tft; cV M.vleft← ct.tleft;
sch.V MI.insert(cV M); preVM ← cV M ;
sch.M.insert(ti, cV M);
sch.Deprov.insert(cV M, ct.tft+ ct.maxedge);
sch.Prov.insert(cV M, ct.tst);

29 if ti 6= t1 then
30 pt← select ∗ from TB where id = ct.idref ;
31 if pt.V Mtype == ct.V Mtype then
32 sch.Prov.update(cV M, pt.tst);
33 end
34 else
35 sch.Prov.update(cV M, pt.tst−BootDelay);
36 end
37 end
38 else
39 sch.Prov.update(cV M, pret.tst−BootDelay);
40 end
41 end
42 pret← ct;
43 end
44 if n==1 then
45 sch.Prov.update(preVM, pret.tst−BootDelay);
46 end

Table I: Changes of EST and LFT of each task.

Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9

Initial EST 0 0 0 5 12 12 14 22 23
LFT 30 27 27 39 40 37 50 50 50

t2, t6, t9
EST 1† 1† 1† 6† 27† 27† 15† 37† 35†

LFT 30 25† 25† 39 40 35† 50 50 45†

t3
EST 1 1 1 6 27 27 15 37 35

LFT 30 25 19† 39 40 35 50 50 45

t1, t4, t7
EST 1 1 1 18† 27 27 30† 37 35

LFT 17† 25 19 30† 40 35 46† 50 45

Final allocation VMT 1 VMT 2 VMT 3 VMT 2 VMT 1 VMT 1 VMT 2 VMT 1 VMT 1

Table II: Execution time matrix.

t1 t2 t3 t4 t5 t6 t7 t8 t9

VMT 1 4 10 6 8 6 8 10 6 10

VMT 2 10 24 10 12 16 16 16 12 16

VMT 3 16 32 18 20 22 22 22 16 28

Table III: Execution cost distribution for various VM
instances.

Type [Start,
End]

Internal
cycle

Cost Scheduled
task

VMI11 [26,45] 2 10 {t6, t9}
VMI12 [26,43] 2 10 {t5, t8}
VMI21 [0,27] 3 6 {t2}
VMI22 [17,46] 3 6 {t4, t7}
VMI31 [0,21] 3 3 {t3}
VMI31 [0,18] 2 2 {t1}

all unassigned successors and the LFT s of unassigned
predecessors. The changes of EST and LFT are shown in
the third row of table I marked with (†). Instead of allocating
two more rows, the actual start time of a task is represented
by the EST and the actual finish time of a task will be
indicated by the LFT after it is scheduled.

The second partial path t3 is assigned. The algorithm
attempts to assign it to free computing resources of the
existing provisioned VM instances with remaining time
period for the current billing cycle. In this case, there is no
available computing resource, the cheapest VM type VMT 3

is selected to execute t3. The LFT of t3 is updated in I.
The third partial path, t1→ t4 → t7, is assigned to the

cheapest VM types VMT 3, VMT 2, and VMT 2 for each
task, followed by updating the EST s of their unassigned
successor t8.

At last, the final partial path t5 → t8 is assigned. The
available VM type for both tasks is VMT 1. An instance is
launched to execute these two tasks sequentially. The overall
cost of the sample example is 37 while IC-PCP and SGX-

E2C2D both charge 42 with the data transfer time and the
delay time of VM instances considered.

Table III shows the provisioning time, deprovisioning
time, internal cycle number, cost and the scheduled tasks
of each VM instance.

5. PERFORMANCE EVALUATION

Montage and LIGO workflows are widely used in the
workflow scheduling community. We generated several
workflows based on the two workflow structures in the
DATAVIEW system to verify the proposed algorithm per-
formance. All the workflows can be retrieved from [28],
in which tasks are simulated by the bubble sorting algo-
rithm with different sizes or different numbers of matrix
multiplication to generate different task sizes. To compare
the performance of LPOD, IC-PCP, and SGX-E2C2D on
an IaaS cloud environment, we used three types of VMs
in Amazon EC2: t2.micro, t2.large and t2.xlarge to execute
these workflow samples, in which the VM computing capac-
ities are in an increasing order. The data transfer time from
one task to another running two different VM instances is
calculated based on an average bandwidth value of 20MBps
between VMs in Amazon EC2 [29]. In order to handle the
fluctuating performance of executing each task, an evaluation
metric C score is used to assess the performance of a
workflow schedule generated by each algorithm, which is
slightly different from the Fitness Score in [30]. The C
score first assigns 0.5 to each schedule and compares the
real makespan and deadline. If the real makespan is smaller
than the deadline, a reward between 0.0 to 0.5 is added to
C, otherwise a penalty between 0.0 to 0.5 is subtracted from
C. The definition of C is below:

C =

{
0.5 + 0.5 ∗ (maxcost−cost)

maxcost , if makespan ≤ δ
0.5− 0.5 ∗ (makespan−δ)

(maxmakespan−δ) , otherwise
(24)

The maxcost is the monetary cost by executing each
workflow task on a distinct instance of the fastest computa-

(a) 10 seconds billing cycle for Montage. (b) 60 seconds billing cycle for Montage.

Figure 2: C-score for Montage workflow.

(a) 10 seconds billing cycle for LIGO. (b) 60 seconds billing cycle for LIGO.

Figure 3: C-score for LIGO workflow.

tion service including all transfer times. The maxmakespan
is retrieved by executing all tasks in the slowest computation
service.

Before experiments, we collected the average task exe-
cution time in 3 different VM types by running each task
10 times with three different VM types in the Amazon EC2
environment. One important parameter is the billing cycle,
which affects the workflow schedule and the final cost. Most
current commercial clouds, such as Amazon, charge users
by hours. The billing cycle is scaled for this experiment. A
long billing cycle 60s and a short billing cycle 10s were
applied in the experiment. The deadline is another vital
factor affecting the final schedule. We denoted the actual
finish time of the first partial path running on the fastest
computation service as Mf and set the deadline following
rules specified below:

Deadline δ = (1 + λ)×Mf (25)

Where, λ ranges from 1.0 to 15.0 with a step length of 0.5.
There are 30 tasks in the Montage workflow and 25 tasks
in the LIGO workflow.

Initially, all three algorithms failed to meet the deadline
when λ < 9 due to the unpredictable transfer time of the
Amazon VMs, code execution time and system communi-
cation time. Fig. 2a, Fig. 2b, Fig. 3a and Fig. 3b shows
that,in a total of 25 cases, our proposed algorithm beats other
algorithms in 20, 24 cases of Montage and 19, 23 cases of
LIGO workflows for the 10 seconds and 60 seconds billing
cycles, respectively. The improvement of C-score is larger
when the deadline factor is smaller (less than 5.0).

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new workflow scheduling
algorithm, LPOD, that successfully finds an optimal sched-
ule for each partial path from a workflow graph G. This
algorithm minimizes the total execution cost of a workflow
while meeting a user-defined deadline.

The experimental results demonstrate the performance ad-
vantage of LPOD over other state-of-the-art algorithms. The
main challenge of implementation is to have the workflow
executor follow the optimized schedule, which is the focus
of our future study.

ACKNOWLEDGEMENT

This work is partially supported by National Science
Foundation under grants CNS-1747095 and OAC-1738929.

REFERENCES

[1] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Ber-
riman, “Experiences using cloud computing for a scientific
workflow application,” in Proceedings of the 2nd interna-
tional workshop on Scientific cloud computing. ACM, 2011,
pp. 15–24.

[2] M. Abouelhoda, S. A. Issa, and M. Ghanem, “Tavaxy: Inte-
grating Taverna and Galaxy workflows with cloud computing
support,” BMC bioinformatics, vol. 13, no. 1, p. 77, 2012.

[3] V. C. Emeakaroha, M. Maurer, P. Stern, P. P. Łabaj, I. Brandic,
and D. P. Kreil, “Managing and optimizing bioinformatics
workflows for data analysis in clouds,” Journal of grid
computing, vol. 11, no. 3, pp. 407–428, 2013.

[4] M. Atkinson, C. S. Liew, M. Galea, P. Martin, A. Krause,
A. Mouat, O. Corcho, and D. Snelling, “Data-intensive archi-
tecture for scientific knowledge discovery,” Distributed and
Parallel Databases, vol. 30, no. 5-6, pp. 307–324, 2012.

[5] F. Bhuyan, S. Lu, I. Ahmed, and J. Zhang, “Predicting
efficacy of therapeutic services for autism spectrum disor-
der using scientific workflows,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 3847–
3856.

[6] I. Ahmed, S. Lu, C. Bai, and F. A. Bhuyan, “Diagnosis rec-
ommendation using machine learning scientific workflows,”
in 2018 IEEE International Congress on Big Data (BigData
Congress). IEEE, 2018, pp. 82–90.

[7] Z. Li, C. Yang, B. Jin, M. Yu, K. Liu, M. Sun, and M. Zhan,
“Enabling big geoscience data analytics with a cloud-based,
MapReduce-enabled and service-oriented workflow frame-
work,” PloS one, vol. 10, no. 3, p. e0116781, 2015.

[8] A. Kashlev, S. Lu, and A. Mohan, “Big data workflows: a
reference architecture and the DATAVIEW system,” Services
Transactions on Big Data (STBD), vol. 4, no. 1, pp. 1–19,
2017.

[9] J. Liu, E. Pacitti, P. Valduriez, D. De Oliveira, and M. Mat-
toso, “Multi-objective scheduling of scientific workflows
in multisite clouds,” Future Generation Computer Systems,
vol. 63, pp. 76–95, 2016.

[10] H. Arabnejad and J. G. Barbosa, “Multi-QoS constrained and
profit-aware scheduling approach for concurrent workflows
on heterogeneous systems,” Future Generation Computer
Systems, vol. 68, pp. 211–221, 2017.

[11] M. R. Garey and D. S. Johnson, Computers and intractability.
wh freeman New York, 2002, vol. 29.

[12] M. Ebrahimi, A. Mohan, and S. Lu, “Scheduling big data
workflows in the cloud under deadline constraints,” in 2018
IEEE Fourth International Conference on Big Data Comput-
ing Service and Applications (BigDataService). IEEE, 2018,
pp. 33–40.

[13] A. Mohan, M. Ebrahimi, S. Lu, and A. Kotov, “Scheduling
big data workflows in the cloud under budget constraints,” in
2016 IEEE International Conference on Big Data (Big Data).
IEEE, 2016, pp. 2775–2784.

[14] A. Verma and S. Kaushal, “Deadline constraint heuristic-
based genetic algorithm for workflow scheduling in cloud,”
International Journal of Grid and Utility Computing, vol. 5,
no. 2, pp. 96–106, 2014.

[15] M. Mao and M. Humphrey, “Scaling and scheduling to
maximize application performance within budget constraints
in cloud workflows,” in 2013 IEEE 27th International Sym-
posium on Parallel and Distributed Processing. IEEE, 2013,
pp. 67–78.

[16] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure
as a service clouds,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 158–169, 2013.

[17] I. Ahmed, S. Mofrad, S. Lu, C. Bai, F. Zhang, D. Che,
and F. A. Bhuyan, “SGX-E2C2D: A Big Data Workflow
Scheduling Algorithm for Confidential Cloud Computing,”
University of Wayne State, Department of Computer Science,
Tech. Rep., 03 2019.

[18] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle
swarm optimization-based heuristic for scheduling workflow
applications in cloud computing environments,” in 2010 24th
IEEE international conference on advanced information net-
working and applications. IEEE, 2010, pp. 400–407.

[19] J. Yu and R. Buyya, “Scheduling scientific workflow appli-
cations with deadline and budget constraints using genetic
algorithms,” Scientific Programming, vol. 14, no. 3-4, pp.
217–230, 2006.

[20] W.-N. Chen and J. Zhang, “An ant colony optimization
approach to a grid workflow scheduling problem with various
QoS requirements,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 39,
no. 1, pp. 29–43, 2009.

[21] A. H. Kashan, “League championship algorithm: a new algo-
rithm for numerical function optimization,” in 2009 Interna-
tional Conference of Soft Computing and Pattern Recognition.
IEEE, 2009, pp. 43–48.

[22] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,”
in Nature inspired cooperative strategies for optimization
(NICSO 2010). Springer, 2010, pp. 65–74.

[23] A. G. Delavar and Y. Aryan, “Hsga: a hybrid heuristic
algorithm for workflow scheduling in cloud systems,” Cluster
computing, vol. 17, no. 1, pp. 129–137, 2014.

[24] J. Sahni and D. P. Vidyarthi, “A cost-effective deadline-
constrained dynamic scheduling algorithm for scientific work-
flows in a cloud environment,” IEEE Transactions on Cloud
Computing, vol. 6, no. 1, pp. 2–18, 2018.

[25] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu,
“Minimizing cost and makespan for workflow scheduling
in cloud using fuzzy dominance sort based HEFT,” Future
Generation Computer Systems, vol. 93, pp. 278–289, 2019.

[26] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-
effective and low-complexity task scheduling for heteroge-
neous computing,” IEEE transactions on parallel and dis-
tributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[27] “Amazon elastic block store (Amazon EBS),” 2015. [Online].
Available: http://aws.amazon.com/ebs/

[28] “The open source DATAVIEW system,” 2019. [Online].
Available: https://github.com/shiyonglu/DATAVIEW

[29] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon S3 for science grids: a viable solution?” in Pro-
ceedings of the 2008 international workshop on Data-aware
distributed computing. ACM, 2008, pp. 55–64.

[30] S. Z. M. Mojab, M. Ebrahimi, R. G. Reynolds, and S. Lu,
“iCATS: Scheduling big data workflows in the cloud using
cultural algorithms,” in 2019 IEEE Fifth International Con-
ference on Big Data Computing Service and Applications
(BigDataService). IEEE, 2019.

