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Abstract— In this new era of Big Data, there is a growing need 
to enable scientific workflows to perform computations at a scale 
far exceeding a single workstation's capabilities. When running 
such data intensive workflows in the cloud distributed across 
several physical locations, the execution time and the resource 
utilization efficiency highly depends on the initial placement and 
distribution of the input datasets across these multiple virtual 
machines in the Cloud. In this paper, we propose BDAP (Big 
DAta Placement strategy), a strategy that improves workflow 
performance by minimizing data movement across multiple 
virtual machines. In this work, we 1) formalize the data 
placement problem in scientific workflows, 2) propose a data 
placement algorithm that considers both initial input dataset and 
intermediate datasets obtained during workflow run, and 3) 
perform extensive experiments in the distributed environment to 
verify that our proposed strategy provides an effective data 
placement solution to distribute and place big datasets at the 
appropriate virtual machines in the Cloud within reasonable 
time. 

Keywords—Big Data, Data Placement, Cloud Computing, 
Scientific Workflow,  Evolutionary Algorithm  

 

I. INTRODUCTION 
   Workflows have been extensively employed in various 

scientific areas such as bioinformatics, physics, astronomy, 
ecology, and earthquake science [10]. They are usually 
modeled as directed acyclic graphs (DAGs) such that workflow 
tasks are represented as graph vertices and the data flows 
among tasks are represented by graph edges. The direction of 
edges shows data flows among tasks. A scientific workflow 
management system (SWFMS) is a system to design and 
execute scientific workflows (SWF). 

   Scientific workflows are potentially very large and 
comprise hundreds or thousands of complex tasks and big 
datasets [3, 6]. Moving huge datasets across workflow tasks 
increases the execution time of scientific workflows. To 
improve throughput and performance, this type of application 
can greatly benefit from distributed high performance 
computing (HPC) infrastructures such as Cloud computing. 

Could Computing has been studied as the next generation 
architecture of IT enterprise by providing cost-effective, 
scalable, on-demand, elastic provisioning and distributed 

computing infrastructure [9]. To execute a scientific workflow 
in the Cloud, scientific workflow tasks and datasets should be 
partitioned, distributed, and assigned to various execution sites 
in the Cloud. The advantages of using Cloud computing for 
scientific workflows are summarized as follows [7]: 1) 
providing large amount of storage space and computing 
resources; 2) improving resource utilization by allocating 
resources on as-needed basis; 3) providing a much larger room 
for the trade-off between performance and cost. 

   Since scientific applications become more and more data 
intensive, data management is sometimes more critical than 
other resource management in Cloud computing. Scientific 
datasets are often in terabytes or even petabytes in size, 
creating the need for dedicated virtual machines just for data 
storage purposes [14]. Therefore, data management needs to 
utilize an effective data placement strategy in order to 
maximize data locality and minimize data migration between 
virtual machines in the Cloud. Data placement should be 
applied such that once workflow tasks are partitioned and 
assigned to a virtual machine in the Cloud, their required 
datasets are already stored in the same virtual machine. In large 
workflows, it is practically impossible to store all of the 
required datasets of tasks in one virtual machine due to the 
storage capacity limitation of virtual machines and so data 
movement is necessary to execute scientific workflows. The 
main goal of data placement is to minimize the total data 
movement between workflow tasks because “moving 
computation to data is often cheaper than moving data to 
computation” [1].  

Scientific workflow typically models and analyzes complex 
scientific research experiments along with huge volumes of 
datasets. These large datasets are physically distributed and 
placed on different sources by users over the Internet. On the 
other hand, new advancements in IT technology bring the 
capability of collecting and accessing these huge amounts of 
information and datasets not only by human beings but also by 
computers. Big datasets are difficult to manage by traditional 
data management tools and strategies. Therefore big data 
technology is becoming the main focus in scientific computing 
research such as the scientific workflow domain recently [2]. 
Big Data can be defined by 5 characteristics, called the five 
V’s: Volume, Value, Velocity, Variety, and Veracity [15].  
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The most important feature of Big Data is volume, which 
characterizes the size of datasets such as records, tables or files. 
Value reflects the usefulness of a dataset. Analyzing and 
processing of collected big datasets for the purpose of scientific 
discovery is the main motivation for researchers that use scientific 
workflow technology. Velocity applies to the enormous volume of 
dataset that come in/out with high speed from different sources. 
Variety is about vast different dataset formats and large number of 
diverse dataset sources to integrate. And finally, veracity is related 
to datasets consistency/certainty and trustworthiness that can 
applied in various stages of data management like dataset 
collecting and processing stages. Our study is about the volume 
aspect of Big Data and how it operates to partition, distribute, and 
place huge size of different datasets into virtual machines in the 
Cloud such that the most interdependent datasets are clustered 
and placed to the same virtual machine. 

In this paper, we propose BDAP, an evolutionary algorithm 
(EA) which is a generic population-based metaheuristic 
optimization strategy for data placement in distributed 
scientific workflows. The main goal is to minimize the dataset 
movement between virtual machines during the execution of a 
workflow under the constraint of virtual machine storage 
capacity.  

Example I. Let’s consider an example to show how a 
scientific workflow can be executed in a Cloud computing 
environment. Figure I illustrates a sample scientific workflow 
with five tasks, five original datasets and five generated 
intermediate datasets [14]. Figure II shows an instance of its 
virtual machines configuration in the Cloud. In this example, 
tasks t1 and t2 as well as datasets, d1 and d3 were assigned to 
virtual machine 1, VM1. Similarly, tasks t3 and t4 were assigned 
to VM2 as well as datasets, d2 and d4. Once we execute the 
workflow, tasks t2 needs transferring dataset d2 from VM2 to 
VM1 to complete its process. However there is no need to 
move any other original datasets from other virtual machine to 
VM2 to run task t3 because all of its required original datasets, 
d2 and d4 are already placed in VM2. Furthermore, t3 only 
required transferring the output of task t1, d1 from VM1 to VM2 
in the run-time stage. We propose a data placement strategy for 
scientific workflows in this paper. We explain our proposed 
strategy for data placement in section 3 in detail.   

To come up with a data placement of scientific workflows 
in the Cloud computing infrastructure, our proposed strategy, 
BDAP, clusters the most interdependent datasets (workflow 
tasks) together and store them possibly in the same virtual 
machine in the Cloud. BDAP applies the one algorithm for 
placement of original and generated intermediate datasets. 

A random set of data placement schemes are generated in 
the first step. In the next step, BDAP computes and compares 
the generated schemes by applying a defined heuristic function 
and return the best scheme. The heuristic function is based on 
the data interdependency within and between the virtual 
machines in the Cloud. The best scheme is the one which 
maximizes the data interdependency within each virtual 
machine and minimizes the data interdependency between 
virtual machines. After placing the datasets, BDAP assigns and 
schedules workflow tasks into corresponding virtual machines. 

Figure I. A scientific workflow with five tasks  ሼtଵ, tଶ, tଷ, tସ, tହሽ  and five 
datasets ሼdଵ, dଶ, dଷ, dସ, dହሽ. The output of task ti is denoted by d’i. The input 
datasets of task tଵ  are ሼdଵ, dଷሽ, tଶ  are ሼdԢଵ, dଶ, dଷሽ , tଷ  are ሼdԢଵ, dଶ, dସሽ, tସ  are ሼdᇱ2, dᇱ3, dଶ, dସ, dହሽ and tହare ሼdԢସ, dହሽ. 

 
Figure II. A virtual machine configuration in the Cloud with three virtual 
machines for workflow of Example I. Datasets ሼdଵ, dଷሽ and tasks ሼtଵ, tଶሽ were 
placed and assigned in VM1. Datasets ሼdଶ, dସሽ and tasks ሼtଷ, tସሽ were placed 
and assigned in VM2. Similarly, dataset ሼdହሽ and tasks ሼtହሽ was placed and 
assigned in VM3. 

Please note although BDAP can be used for task 
assignment, the workflow scheduling is out of the scope of this 
paper. BDAP does not apply any specific strategy for the order 
(either sequential or parallel) execution of workflow tasks. 
BDAP can be used by any current workflow scheduling 
algorithms to improve the workflow throughput. In this paper, 
we simply execute workflow tasks in a sequential order to 
evaluate BDAP.  

The rest of the paper is organized as follows: in Section 2 
we define and formalize our system model. In Section 3 we 
explain our data placement strategy in detail. Then in Section 
4, the experimental results are shown and discussed. Section 5 
presents implementation of a scientific workflow in the 
FutureGrid. Section 6 presents related work. Finally, 
conclusion and future work are presented in Section 7. 

II. FORMALIZING WORKFLOW DATA PLACEMENT 

To model the Cloud computing environment, we consider I 
distributed virtual machines in the Cloud as the execution sites 
to execute workflows. Each virtual machine can be provided 
by different Cloud Computing Providers (CCP) such as 
Amazon EC2, Google App Engine, and Microsoft Azure. 
Although CCPs normally have their own data and 
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computation placement strategy in order to store data and 
assign computation jobs to proper virtual machines, 
sometimes users (e.g., scientists) have concerns about their 
own datasets (e.g., data security or too large data or 
requirement for specific data processing utilities and 
equipment). Such users prefer to keep and store their data in a 
particular virtual machine and not allowed to move their data 
to the other virtual machines. This type of dataset is called 
fixed-location datasets.  

For addressing these scientific user’s concerns and 
managing fixed-location datasets, users need to have private 
execution sites or to be able to add their own local 
computation facilities as virtual machines. In that way, we 
need to apply a new data placement strategy to address the 
fixed-location datasets and minimize the total data movement 
across dedicated virtual machines in the Cloud. 

To minimize data movement between virtual machines in 
the Cloud, we cluster the virtual machines such that the placed 
datasets have the highest data interdependency within each 
virtual machine as well as the lowest data interdependency 
between virtual machines. In the rest of this section, we model 
our data placement solution in detail. Table I summarizes all 
the used symbols and notations in this paper. 

To execute a scientific workflow in Clouds, we need to 
model Clouds first. A Cloud computing environment is 
modeled as follows: 

Definition 2.1 (Cloud Computing Environment C). A Cloud 
computing environment C is a 3-tuple  C ൌ ሺVM, SC, DTRሻ , 
where 

• VM is a set of virtual machine in the Cloud vm୧ 
(i ൌ 1, 2, … , I)  

• SC: VM ՜  Rା  is a storage capacity function. 
SC  ሺvm୧ሻ,  vm୧ א VM gives the maximum available 
storage capacity of virtual machine vm୧  in the Cloud 
computing environment C. It is measured in some pre-
determined unit such as mega-bytes, giga-bytes or tera-
bytes. Rା is the set of positive real number.  

• DTR: VM ൈ VM ՜ Q଴ା is the data transfer rate function. DTRሺvm୧ଵ, vm୧ଶሻ,  vm୧ଵ,  vm୧ଶ א VM  gives the data 
transfer rate between two virtual machines  vm୧ଵand vm୧ଶ. It is measured in some pre-determined 
unit such as mega-bytes, giga-bytes per second. Q଴ା is 
the set of positive rational number. 

For solving the complex scientific problems, scientists are 
able to create and run their own scientific workflows 
simultaneously. Each individual workflow contains a set of 
tasks that consume various datasets and may produce 
intermediate datasets as well. Those produced datasets will be 
sent to other tasks as their inputs by following the data flow 
logic. A scientific workflow is formalized as follows: 

Definition 2.2 (Scientific Workflow W). A scientific 
workflow W can be modeled formally as a 6-tuple that consists 
of three sets and two functions as follows: W ൌ ሺT, D, Dᇱ, S, TS, DSሻ 

• T is the set of workflow tasks. Each individual task is 
denoted by t୩, T ൌ ሼtଵ, tଶ, tଷ, … , tKሽ. 

• D is the set of input datasets for workflow W. Each 
individual dataset is denoted by d୨, D ൌ ൛dଵ, dଶ, … , dJൟ.  

• DԢ is the set of output datasets for workflow W. The 
total number of output datasets is equal to the total 
number of workflow tasks as each workflow task, t୩ 
generates one output dataset, d୩ which can flow to the 
other tasks as the input dataset. Each individual output 
dataset is denoted by dԢ୩, DԢ ൌ ሼdԢଵ, dԢଶ, … , dԢKሽ.  

• S: D ׫ DԢ ՜ Rା is the dataset size function. 

• S ሺd୨ሻ,  d୨ א D ׫ DԢ  returns the size of original or 
generated dataset d୨. The size of a dataset is defined in 
some pre-determined unit such as mega-bytes, giga-
bytes or tera-bytes. Rା  is the set of positive real 
number. 

• TS: D ׫ Dᇱ  ՜ T  is the dataset-task function. 
TS൫d୨൯,  d୨ א D ڂ DԢ  returns the set of workflow tasks 
that consume d୨ as their input.   

• DS: T ՜  D ׫ Dᇱ  is the task-dataset function. 
DS ሺt୩ሻ,  t୩ א T  returns the set of datasets that are 
consumed by ݐ௞ as its input. The datasets can be either 
original or generated datasets.   

To evaluate and compare BDAP with the others proposed 
algorithms Workflow Communication Cost is defined as 
follows: 

Definition 2.3 (Workflow Communication Cost, WCC). 

If dataset ௝݀  is required to transfer from virtual machine ݉ݒ௜ଵ 
to ݉ݒ௜ଶ then the data movement cost of ௝݀ is defined as  

൫ܥܯܦ ௝݀, ,௜ଵ݉ݒ ௜ଶ൯݉ݒ ൌ  ቐ 0,                                  ݂݅ ݅ଵ ൌ ݅ଶܵ൫ ௝݀൯ܴܶܦሺ݉ݒ௜ଵ, ௜ଶሻ݉ݒ ,    ݂݅ ݅ଵ ് ݅ଶ              ሺ1ሻ 

   Given a workflow W and Cloud computing C, workflow 
communication cost is equal to the total data movement cost 
for executing workflow W in C is defines as follows: 

,ሺܹܥܥܹ ሻܥ ൌ  ෍ ෍ ൫ ௝݀ܥܯܦ , ,௜ଵ݉ݒ ௐא஽ௌሺ௧ೖሻ௧ೖא௜ଶ൯ௗೕ݉ݒ
௄

௞ୀଵ                          ሺ2ሻ 

WCC gives the total data movement within executing the 
whole workflow in the Cloud C. In the remainder of this 
section, we define and model the problem and our solution. 
Our solution is based on the clustering technique. The three 
main concepts in clustering are objects which need to be 
clustered, clusters and a separation measure to compute the 
similarity among the objects. In this work, datasets are 
considered as the objects and virtual machines in the Cloud are 
considered as the clusters. The most important concept is 
defining a good separation measurement to cluster the most 
similar objects together to meet the objective goal. 
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TABLE I. SYMBOLS AND NOTATIONS SUMMARY 

Notations Description ࡹࢂ The set of virtual machines ࢜࢏࢓ The ith virtual machine in VM ࡯ࡿሺ࢜࢏࢓ሻ The storage capacity of virtual machine vm୧ ࡰ The set of datasets ࢊࢋ࢞࢏ࢌࡰ The set of fixed datasets,  Df୧୶ୣୢ ك D ࢐ࢊ The jth dataset in D ࡿሺ࢐ࢊሻ The size of dataset d୨ ࢀ The set of  Tasks ࡿࡰሺ࢚࢑ሻ The set of datasets as the input of task t୩ ࡿࢀሺ࢐ࢊሻ The set of tasks which get dataset d୨ as the input ࡾࢀࡰሺ࢜࢏࢓૚,  ૛ሻ The data transfer rate between two virtual࢏࢓࢜
machines, vm୧ଵand vm୧ଶ ࢖ࢊሺ࢐ࢊ૚,  ࢐૛ሻ The data interdependency between datasets d୨ଵ ࢊ
and d୨ଶ ࡼࡰ The data interdependency matrix of D ࢸ The J-element vector of datasets placement 
scheme which J is the number of workflow 
datasets.  ࢸሺ࢐ࢊሻ The virtual machine to which dataset ௝݀ is 
assigned in the placement scheme ࡼ ߖ The set of data placement schemes  

    

The goal of this study is minimizing data movement among 
virtual machines. Therefore, we consider data interdependency 
as the separation measurement. For this, two datasets are 
interdependent and should be collocated in the same virtual 
machine if they are simultaneously needed as inputs by many 
tasks. The definition for the interdependency of a pair of 
datasets is as follows: 

Definition 2.3 (Data Interdependency). We consider the 
number of common tasks that take a pair of datasets as input to 
define the data interdependency of the datasets. Data 
interdependency value is divided by the total number of 
workflow tasks in order to be normalized in the range of [0 1]. 
Formally, given two datasets ௝݀ଵ and ௝݀ଶ,  the data 
interdependency is calculated by: ݀݌൫ ௝݀ଵ, ௝݀ଶ൯ ൌ  หܶܵሺ݀௝ଵሻ ת ܶܵሺ݀௝ଶሻห|ܶ|                                        ሺ3ሻ 

    For instance, if the set of tasks that consume dଵ  is  TSሺdଵሻ ൌ ሼtଵ,tଶሽ and dଶ  is TSሺdଶሻ ൌ  ሼtଶ,tଷ, tସሽ  then the data 
interdependency between dଵ and dଶ is  dpሺdଵ, dଶሻ ൌ |TSሺୢభሻתTSሺୢమሻ||T| ൌ | ሼ୲భ,୲మሽת ሼ୲మ,୲య,୲రሽ ||ሼ୲భ,୲మ,୲య,୲ర,୲ఱሽ|  ൌ ଵ ହ ൌ 0.20.  In this way, 
two datasets are interdependent once they have at least one 
common task consuming both of them. Two datasets have a 
higher interdependency when they are used by more common 

tasks and the greater the number of common tasks is, the higher 
is the data interdependency of datasets.  

   To maximize data locality, it is necessary to pre-cluster 
the datasets initially. In the first step, we calculate the data 
interdependency of all the workflow datasets and generate the 
data interdependency matrix (DM). In the interdependency 
matrix, rows and columns are the workflow datasets and the 
value of interdependency matrix is the data interdependency 
between two datasets. For instance, data interdependency 
matrix of workflow in Example1 is as follows:  

DM ൌ
dଵdଶdଷdସdହdଵᇱdଶᇱdଷᇱdସᇱ ۈۉ

ۈۈۈۈ
212ۇ 131  2 0 0    1 0   0 0 1 2 1   2 1   1  02 0 0   1 0   0  00 2 0 2 1   1 1   1 001000

12110  01000
11110

2   0   2   1   1   
02000

20211   10110
10101 ۋی

ۋۋۋۋ
ۊ

 

 BDAP partitions and distributes the original datasets into 
all appropriate virtual machines in the Cloud. Then the related 
tasks will be assigned to the corresponding virtual machine so 
that their required datasets are stored there. In this way, the 
total amount of data movement between virtual machines is 
decreased and the overall workflow execution time will be 
reduced. Data placement scheme is defined to represent the 
place of each workflow dataset in a virtual machine. A data 
placement scheme is defined formally as follows: 

Definition 2.4 (Data Placement Scheme શሻ. Suppose 
there are I virtual machines and J datasets, a data placement 
scheme is represented by a J-element vector Ψ  such that Ψ൫d୨൯ indicates the virtual machine to which d୨ is placed. For 
example the data placement scheme of Example I is Ψ ൌሺ1, 2, 1, 2, 3, 1, 1, 2, 2ሻ and it means datasets dଵ , dଷ, dଵכ  and dଶכ   
are placed in virtual machine vmଵ  ( Ψሺdଵሻ ൌ  Ψሺdଷሻ ൌΨሺdଵᇱ ሻ ൌ Ψሺdଶᇱ ሻ ൌ vmଵ), datasets dଶ , dସ, dଷᇱ  and dସᇱ  in virtual 
machine vmଶ  ( Ψሺdଶሻ ൌ  Ψሺdସሻ ൌ Ψሺdଷᇱ ሻ ൌ Ψሺdସᇱ ሻ ൌ vmଶ ) 
and the dataset dହ in virtual machine vmଷ ( Ψሺdହሻ ൌ vmଷ).  

Definition 2.5 (Fixed-Location Datasets ۲܌܍ܠܑ܎ ). Given 
the set of datasets, fixed-location datasets Df୧୶ୣୢ ك D  is a 
subset of D such that they have pre-determined allocations and 
cannot be moved. Formally suppose Df୧୶ୣୢ ൌ  ൛ d୨ଵ, d୨ଶ, … , d୨୫ൟ ك D then  ߖ൫d୨ଵ൯ ൌ vm୧ଵ, Ψ൫d୨ଶ൯ ൌ vm୧ଶ, … and Ψ൫d୨୫൯ ൌ vm୧୫ ,ሼ vm୧ଵ, vm୧ଶ, … , vm୧୫ሽ ك  VM     
the other datasets, ܦ െ    .௙௜௫௘ௗ, are called flexibleܦ

 We consider all the workflow tasks are flexible and there 
are no fixed tasks because moving computation task to datasets 
is often cheaper than moving datasets to computation task 
nodes. To define a good measurement to compare separation 
between virtual machines, data interdependency within and 
between virtual machines are defined as follows: 
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Definition 2.6 (Within-VirtualMachine Data 
Interdependency ܅۲ۻ܄). 

ሻߖௐሺܦܯܸ ൌ  ෍ ෍ ൫݌݀ ௝݀ଵ, ௝݀ଶ൯ అ൫ௗೕభ൯ ୀ ௩௠೔అ൫ௗೕమ൯ ୀ ௩௠೔

ூ
௜ୀଵ                                         ሺ4ሻ  

where dp൫d୨ଵ, d୨ଶ൯ is the data interdependency between task d୨ଵand d୨ଶ , I is the maximum number of virtual machines in 
the Cloud.  

Definition 2.7 (Between-VirtualMachine Data 
Interdependency ࡮ࡰࡹࢂ). 

ሻߖ஻ሺܦܯܸ ൌ  ෍ ෍ ൫݌݀ ௝݀ଵ, ௝݀ଶ൯ అ൫ௗೕభ൯ୀ ௩௠೔భఅ൫ௗೕమ൯ୀ ௩௠೔మ

I
௜భஷ௜మ                                       ሺ5ሻ 

To achieve the data placement goal, BDAP uses heuristic 
information for its search direction of finding the best data 
placement scheme. Heuristic information should consider both 
within and between virtual machine interdependency. The 
heuristic is defined in BDAP as follows: 

Definition 2.8 (Data Interdependency Greedy DG). The 
DG heuristic biases BDAP to select the data placement scheme 
with higher data interdependency. It is defined as: ܩܦሺߖሻ ൌ ሻߖௐሺܦܯܸ ൅ ሻߖ஻ሺܦܯ1ܸ ൅ 1                                                            ሺ6ሻ 

 In this formula, the numerator measures Within-
VirtualMachine Data Interdependency and the denominator 
measures the Between-VirtualMachine Data Interdependency. 
The bias 1 is set to avoid divided-by-zero in the case that the 
data interdependency between virtual machines get zero. A 
good data placement scheme has a higher DG. Therefore the 
output of BDAP is a data placement scheme with the highest 
DG. 

 In our system model we consider two types of system 
constraints in terms of data which are defined as follows: 

Definition 2.9 (Data Placement Scheme Legality 
Constraints). Two types of illegal data placement schemes are 
considered in BDAP: 

1) Virtual machine storage capacity constraint: The total 
amount of placed datasets into a virtual machine should be less 
than the available storage capacity of the virtual machine as it 
is impossible to fit all those datasets into the same virtual 
machine.  

2)  Non-replication constraint: Once a dataset is placed into 
a specific virtual machine, it is not allowed to place it into 
another virtual machine as data and task replication is not in the 
scope of this version of BDAP. 

Definition 2.10 (Data Placement Solution). The data 
placement solution for scientific workflow, W, to execute in a 
Cloud computing environment, C, is to select a data placement 
scheme Ψ א P to minimize the workflow communication cost 
(WCC) under the virtual machine storage capacity and non-

replication constraints. In the next section, we explain our data 
placement strategy, BDAP, in detail. 

III. PROPOSED DATA PLACEMENT ALGORITHM 

The main steps of BDAP are depicted in Figure III. In the 
first phase, BDAP applies a metaheuristic optimization 
algorithm to place the original data. The main goal is to 
minimize workflow communication cost by minimizing the 
data movement between virtual machines in the Cloud within 
running a workflow. The main steps of this phase which 
applies in design-time are shown in the flowchart of Figure III. 
BDAP starts with calculating the data interdependency matrix. 
Then, it generates a set of legal data placement schemes 
randomly and calculates their heuristic values. In the following, 
for each data placement scheme, BDAP applies three main 
operators, Selection, Crossover, and Mutation sequentially to 
generate possibly better schemes with higher heuristic values. 
At the end of the algorithm, the best observed data placement 
scheme is recorded in Ψୠୣୱ୲ and will be returned as the output 
of BDAP. Selection, crossover and mutation operators are 
defined as follows: 

Definition 3.1 (Selection SE). Selection is the process of 
choosing two schemes for recombination and generation two 
new schemes. There are many methods to perform selection. 
We use the Roulette Wheel Selection techniques for BDAP. In 
this selection operator, the probability to choose a certain 
scheme is proportional to its heuristic value.  

Definition 3.2 (Crossover CO). This operator combines 
two selected schemes to reproduce two new schemes. The idea 
is that the new generated schemes may be better and have 
higher heuristic value if they take the best characteristics from 
their parent schemes. For instance, suppose Ψ୪ଵ ൏1, 2, 1, 2, 3 ൐, Ψ୪ଶ ൏ 2, 2, 1, 3, 1 ൐  and the selected row 
number to crossover is 3 then Ψ୪ଵᇱ ൏ 1, 2, 1, 3, 1 ൐ ܽ݊݀ Ψ୪ଶᇱ ൏2, 2, 1, 2, 3 ൐.   

Definition 3.3 (Mutation MU). After crossover, BDAP 
applies mutation operator to an individual scheme to generate a 
new version of it such that a virtual machine position in the 
scheme have been randomly changed. Mutation prevents 
BDAP to be trapped in a local maximum heuristic value. For 
example, suppose Ψ୪ ൏ 1, 2, 1, 2, 3 ൐  and the select row 
number is 4 and generated randomized number for position 4 is 
3 then ΨԢ୪ ൏ 1, 2, 1, 3, 3 ൐.  

For applying data placement strategy and analyzing the data 
interdependency, the whole workflow has to be designed. It 
means all tasks and datasets of the scientific workflow have to 
be specified. The BDAP algorithm is outlined in Algorithm I. 

In the first step, BDAP generates popsize number of 
feasible and valid data placement schemes randomly with the 
locations for fixed-location datasets fixed. It also calculates 
the heuristic value of each individual scheme (lines1-5). The 
position numbers of the fixed-location datasets in the 
generated data placement scheme are fixed and will not 
change through the whole algorithm.  In the next steps, BDAP 
applies three main operators to generate new schemes with a 
hopefully higher heuristic values until it reaches the max 
number of iterations. 
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Algorithm I.  Big Data Placement (BDAP) – Original Datasets  
Input:  
       D:    set of workflow datasets,  
       DP: data interdependency matrix,  
       popsize:           size of population , 
       er:                     rate of elitism, 
       cr:                     rate of crossover, 
       mr:                    rate of mutation, 
       num_iteration: number of iterations, 
 
Output: 
       The best data placement scheme, ߖ௕௘௦௧ 
 
1. Begin 
2.     for i = 1 to popsize do 
ߖ  .3 ՚ Generate a  legal data placement scheme randomly; 
݌݋ܲ        .4 ՚ ൏ ,ߖ ሻߖሺܩܦ ൐; 
5.     end for 
6.     idx = 0;  
7.     while ( idx ൑ num_iteration ) do 
8.         ne = popsize ൈ er;  //  number of elitism 
ா݌݋ܲ .9 ՚ The best ne data placement schemes in Pop; 
10.        nc = popsize * cr; // number of crossover   
11.        for i =1 to nc do 
12.       randomly select two data placement scheme ߖ஺ and ߖ஻ from 

Pop; 
13.            generate ΨC and ΨD by one-point crossover for flexible 

           datasets of ߖ஺ and ߖ஻; 
஼݌݋ܲ           .14 ՚ ൏ ,஼ߖ ሺΨCሻܩܦ ൐; 
஼݌݋ܲ           .15 ՚൏ ,஽ߖ ሺΨ஽ሻܩܦ ൐; 
16.      end for 
17.      nm= popsize ൈ mr;// number of mutation   
18.      for i =1 to nm do 
19.            select a data placement scheme ߖ௝ from ܲ݌݋஼; 
௝ᇱߖ .20 ՚ mutate randomly a flexible virtual machine position  

number in ߖ௝ ; 
21.           if  ߖ௝ᇱ is illegal 
22.          update ߖ௝ᇱ with a data placement scheme by repairing ߖ௝ᇱ; 
23.           end if 
௝ߖ           .24 ՚ ߖ௝ᇱ; 
25.       end for 
26.       Pop ՚ ܲ݌݋ா and ܲ݌݋஼; 
27.       idx = idx +1;   

28.     end while 
29.     return the best data placement scheme ߖ௕௘௦௧; 
30. end 

 First, it selects ne = popsize  ൈ elitism_rate number of 
scheme with the highest heuristic value and saves them in 
the ܲ݌݋ா  (lines 9-10), these high-value schemes will transfer 
directly to the next generation of schemes to guarantee the 
convergence of BDAP. We apply the fitness proportionate 
selection, roulette wheel selection, for this step. The idea 
behind the roulette wheel selection technique is that each 
scheme is given a chance to select in proportion to its heuristic 
value. Then, it applies the crossover function and computes 
the heuristic value of the new generated schemes (lines 11-16). 
In the last step, BDAP applies the mutation operator for a 
randomly selected scheme along with computing its heuristic 
value (lines 17-25). In the crossover and mutation phases, 
BDAP does not change the number of virtual machine position 
for the fixed-location datasets and applied those function only 
on flexible datasets.   

 

 
 

 

 

 

 

 

 

 

Figure III. Flowchart of BDAP. 

The idea behind the roulette wheel selection technique is 
that each scheme is given a chance to select in proportion to 
its heuristic value. Then, it applies the crossover function and 
computes the heuristic value of the new generated schemes 
(lines 11-16). In the last step, BDAP applies the mutation 
operator for a randomly selected scheme along with 
computing its heuristic value (lines 17-25). In the crossover 
and mutation phases, BDAP does not change the number of 
virtual machine position for the fixed-location datasets and 
applied those function only on flexible datasets.  These three 
operators apply to the schemes till it reaches a certain number 
of iterations, a parameter defined by the user at the beginning 
of the algorithm. In the last step, the best data placement 
scheme Ψୠୣୱ୲ is returned as the output of BDAP.   

IV. EXPERIMENTS AND DISCUSSION 
In this section, we present and discuss the simulation results 

and compares BDAP with the most competitive and Random 
approaches.  

A. Simulation Setting 

To evaluate performance of our proposed data placement 
approach, BDAP, we compare it with Yuan’s work and 
random strategies. Yuan’s work is the one of the most 
competitive algorithms in this field. It is a K-means based 
clustering algorithm which applies a heuristic binary 
clustering algorithm to precluster datasets into their 
appropriate virtual machines. Then, it greedily assigns the 
workflow tasks to each virtual machine such that it stores the 
most of its input dataset. Once an intermediate dataset is 
generated, it places it to the virtual machine that has the most 
interdependent datasets with the newly generated dataset.  

   We simulate a Cloud computing environment on the 
Wayne State University’s high performance Grid Computing. 
We use eight grid computation nodes along with total storage 
capacity of 100 GB and compared the three algorithms by 
simulating a variety of real and synthetic workflows. We test 
BDAP using five synthetic workflow applications based on 
real scientific workflows [3]: Montage, CyberShake, 
Epigenomics, LIGO and SIPHT (Figure IV). These workflow 
applications are developed through the Pegasus workflow 
management system for different research domains like 
bioinformatics and astronomy. We select the large-size of each 
workflow with about 1000 number of tasks and assume each 
task can be executed on every virtual machines. 

Yes 

No 

Calculate Data 
Interdependency 
Matrix (DM) 

Generate a set of 
legal data placement 
scheme randomly (P) 

Compute the 
heuristic value of 
each scheme (DG) 

Termination 
Conditions?

Return the best data placement scheme Ψୠୣୱ୲ 

Apply Selection (SE), 
Crossover (Co) and Mutation 
(MU) to generate a new 
population of legal data 
placement schemes 
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For our experiments, we run 100 times each of the selected 
workflows along with assigning five different numbers of 
datasets to their tasks randomly. The numbers of datasets are 5, 
10, 25, 50 and 100, and dataset sizes are uniformly distributed 
in the range of [1TB, 100TB]. In addition, we consider five 
size numbers of virtual machines, 5, 10, 15, 20 and 25 in the 
range of [200TB 1PB] of storage capacity (as shown in Table 
II). Virtual machines storage capacities are selected in a 
uniformly distributed manner too. We demonstrate the 
performance of our proposed data placement algorithm and 
Yuan and Random approaches in terms of the average of the 
workflow communication cost defined in section 3. In our 
experiments, we assume that the data transmission rates among 
all virtual machines are fixed. Table III shows the value of 
parameters using in BDAP.   

We do our experiments for two different scenarios, one 
scenario with considering 20% of fixed-location datasets and 
the other one without considering fixed-location datasets and 
consider the average of it. 

B.  Results 

Figure V shows the Workflow Communication Cost 
(WCC), in terms of hour by varying the number of datasets and 
fixing the number of virtual machines. WCC is increased by 
increasing the number of datasets in all three strategies. 
However, it can be seen clearly that our strategy reduces WCC 
compared to the other strategies. This results in greater 
improvement margin with more number of datasets.  

 In the next step we calculate WCC by varying the numbers 
of virtual machines and fixing the number of datasets (Figure 
VI). Although WCC is increased by increasing the number of 
virtual machines, the increasing rate of our strategy is slower 
than the others. This results in greater improvement margin 
with more number of virtual machines. 

    We demonstrate performance of BDAP in terms of 
workflow communication cost by varying the number of 
datasets and virtual machines for five different types of 
workflows. We compare the BDAP strategy with Yuan as well 
as with random strategies. The result shows that BDAP 
manages to decrease effectively workflow communication cost 
more than Yuan and Random approaches.  

V. IMPLEMENTATION 

In our DATAVIEW system [13], we integrated the 
scientific workflow engine subsystem with FutureGrid 
academic research cloud provider to automatically provision 
virtual machines to execute scientific workflows in the Cloud. 
We implemented bash scripts to automatically provision VMs 
by first creating new VM images in the FutureGrid framework 
through configuring both hardware and software stack. 
Workflows execution is transparent to our data scientists. 
They can just create and run any arbitrary workflow and the 
system deploys a set of virtual machines, datasets and moves 
workflow tasks to the corresponding virtual machine. 

Figure IV: The structure of five realistic scientific workflows [3]. 

TABLE II. DESCRIPTION OF DATASET AND VIRTUAL MACHINE OF THE 
EXPERIMENT. 

Overall dataset and virtual machine 

# of datasets 

Dataset size 

# of virtual machines 

Virtual machines storage capacity 

[5,10,25,50,100] 

1TB – 100TB 

[5,10,15,20,25] 

200TB – 1PB 

 
TABLE III. DEFAULT SETTING FOR BDAP ALGORITHM. 

Overall dataset and virtual machine 

Population size 

Initial population 

Maximum generation 

Crossover probability 

Mutation probability 

Maximum iteration 

100 

Randomly generation 

100 

0.8-0.9 

0.3-0.5 

1000 

 

In design time, we created the sophisticated XML parser to 
parse the workflow specification, which is stored in the XML 
format. The XML parser extracted all workflow tasks, a set of 
input data products and a set of output datasets that will be 
generated at run time. The XML parser generated output 
(dpID, taskID) key/value pairs that contain mapping details to 
map datasets to corresponding workflow tasks. BDAP 
algorithm validate the (key, value) pairs to identify the optimal 
mapping of datasets and workflow tasks to the corresponding 
virtual machines. 
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  Figure V. Workflow Communication Cost by varying the number of datasets. 

Figure VI. Workflow Communication Cost by varying the number of virtual machines. 
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In running time, DATAVIEW provisioned a set of virtual 
machines in FutureGrid and deployed datasets to the 
corresponding virtual machines based on the output of BDAP. 
In our DATAVIEW system, we used files as a dataset type 
and used SCP command to move actual files from our 
DATAVIEW system to the provisioned virtual machines. In 
the next step, we assigned all the workflow tasks to the 
provisioned virtual machines. After assigning workflow tasks 
and datasets, the workflow was executed and intermediate 
datasets were moved to the corresponding virtual machines. 
Data flow between each workflow task was implemented by 
the SCP command. The final dataset was moved from its 
virtual machine to the DATAVIEW system and the results 
were published to the user. In this way, all low-level details 
were hidden from the data scientists and only the intermediate 
and final data products generated by the workflow were 
visible to data scientists. Table IV shows some of the result of 
applying BDAP for the execution of workflow in Example I. 

TABLE IV. SOME RESULT OF BDAP RUNNING. 
The best data placement scheme in the 

First population <d#, vm#> Last (10th ) population <d#, vm#> 

<d1,vm1><d2,vm2><d3,vm3><d4,vm3

><d5,vm1><d’1,vm2><d’2,vm1><d’3,v
m1><d’4,vm3>  

DG = 0.1671 and WCC = 0.0097 hr 

<d1,vm3><d2,vm1><d3,vm3><d4,vm
1><d5,vm2><d’1,vm1><d’2,vm2><d’
3,vm1> <d’4,vm2>  

DG = 3.4032 and WCC = 0.0041 hr 

<d1,vm2><d2,vm1><d3,vm3><d4,vm1

><d5,vm3><d’1,vm3><d’2,vm1><d’3,v
m2> <d’4,vm3>  

DG = 0.2513 and WCC = 0.0083 hr 

<d1,vm1><d2,vm2><d3,vm1><d4,vm
2><d5,vm3><d’1,vm2><d’2,vm1><d’
3,vm3> <d’4,vm2>  

DG = 3.4678 and WCC = 0.0033 hr 

<d1,vm2><d2,vm2><d3,vm1><d4,vm3
><d5,vm3><d’1,vm3><d’2,vm3><d’3,
vm1> <d’4,vm3>  

DG = 0.3165 and WCC = 0.0081 hr 

<d1,vm2><d2,vm2><d3,vm1><d4,vm
2><d5,vm3><d’1,vm2><d’2,vm3><d’
3,vm3> <d’4,vm1>  

DG = 3.3692 and WCC = 0.0042 hr 

VI. RELATED WORK 
Previous research studies for distributed computing 

environment have been mainly focused on the performance 
modeling and optimization of job scheduling and task 
allocation. But due to the rapid increase in the size of available 
data over the internet and the emerging field of Big Data, data 
placement becomes a fundamental spot in the Cloud recently. 
Kosar et al., [12] proposed a framework for distributed 
computing systems, which considered the data placement 
subsystem as an independent module along with computation 
subsystems. In their proposed model, data placement jobs can 
be queued, scheduled, monitored, managed and even 
checkpointed. Kayyoor et al., [11] considered the data 
placement and replication problems together for the 
distributed environments. They claimed minimizing of query 
latencies is not a critical issue in many scenarios of analytical 
workloads, so they tried to minimize the average number of 
using computation nodes by grouping the most interdependent 
data together based on their occurrences of the common query 
accesses. Chervenak et al., [5] explored the advantages of 
separation of data placement as a service from workflow 
management systems. By applying an autonomous data 
placement service along with data replication service, they 

evaluate and display the benefits of pre-staging data compare 
to the data stage in and out strategies of the Pegasus workflow 
management systems. However, none of the above studies 
decrease the data movement among virtual machine in the 
Cloud.  

Some of the workflow management systems have been 
extended to execute scientific workflow in Clouds. Pegasus is 
designed to execute scientific workflows on a number of 
distributed resources such as local machines, clusters or 
Cloud. Nimbus is an integrated set of tools which allows 
scientific users to deploy a cluster into infrastructure Clouds to 
execute their scientific workflows. Eucalyptus is an open 
source Cloud management software to create on-demand, self-
service private Cloud resources.    

In Catalyurek et al., [4] workflows were modeled by the 
hypergraph concept and a hypergraph portioning technique, k-
way partitioning, is applied to minimize the cutsize. In that 
way, they cluster the workflow tasks as well as their required 
data in the same execution site. One of the closest works to 
our strategy is Yuan et al., [14], in which they applied a 
greedy binary clustering to precluster datasets; then they 
greedily assigned the workflow tasks to an execution site that 
contains the most of the input datasets. At the end, once an 
intermediate dataset was generated, they placed it to the 
execution site which has the most interdependent dataset. 
Although their approach placed the most interdependent 
dataset together and can reduce data movement, the algorithm 
is greedy and it clustered the data dependency matrix into two 
parts in each iteration and so their clustering technique was 
sensitive to the selection point in any iteration. The other close 
work to our study is Er-Dun et al., [8] in which they applied a 
genetic algorithm to find their data placement solution along 
with load balancing factor. Their approach reduced data 
movement, however, they did not consider data 
interdependency between virtual machines and also they did 
not consider task assignment. 

VII. CONCLUSIONS AND FUTURE WORK 
  We proposed BDAP, a data placement strategy for Cloud-

based scientific workflows. BDAP minimized the total amount 
of data movement between virtual machines during the 
execution of the workflows. Our extensive experiments and 
comparisons indicated that BDAP outperformed other 
proposed algorithms on minimizing data movement.    
Scientific workflows consume and produce huge datasets. 
Applying data replication can reduce data movement as well. 
So in future work, we plan to improve BDAP by applying data 
replication techniques. In addition, we considered data 
placement for executing of a single workflow. However, in real 
world, multiple workflows can be executed concurrently. 
Therefore, we plan to extend BDAP strategy to achieve data 
placement for the execution of multiple workflows 
simultaneously.  
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