
BDAP: A Big Data Placement Strategy for Cloud-
Based Scientific Workflows

Mahdi Ebrahimi, Aravind Mohan, Andrey Kashlev, and Shiyong Lu
Wayne State University

Detroit, U.S.A.

{mebrahimi, amohan, andrey.kashlev, shiyong}@wayne.edu

Abstract— In this new era of Big Data, there is a growing need
to enable scientific workflows to perform computations at a scale
far exceeding a single workstation's capabilities. When running
such data intensive workflows in the cloud distributed across
several physical locations, the execution time and the resource
utilization efficiency highly depends on the initial placement and
distribution of the input datasets across these multiple virtual
machines in the Cloud. In this paper, we propose BDAP (Big
DAta Placement strategy), a strategy that improves workflow
performance by minimizing data movement across multiple
virtual machines. In this work, we 1) formalize the data
placement problem in scientific workflows, 2) propose a data
placement algorithm that considers both initial input dataset and
intermediate datasets obtained during workflow run, and 3)
perform extensive experiments in the distributed environment to
verify that our proposed strategy provides an effective data
placement solution to distribute and place big datasets at the
appropriate virtual machines in the Cloud within reasonable
time.

Keywords—Big Data, Data Placement, Cloud Computing,
Scientific Workflow, Evolutionary Algorithm

I. INTRODUCTION
 Workflows have been extensively employed in various

scientific areas such as bioinformatics, physics, astronomy,
ecology, and earthquake science [10]. They are usually
modeled as directed acyclic graphs (DAGs) such that workflow
tasks are represented as graph vertices and the data flows
among tasks are represented by graph edges. The direction of
edges shows data flows among tasks. A scientific workflow
management system (SWFMS) is a system to design and
execute scientific workflows (SWF).

 Scientific workflows are potentially very large and
comprise hundreds or thousands of complex tasks and big
datasets [3, 6]. Moving huge datasets across workflow tasks
increases the execution time of scientific workflows. To
improve throughput and performance, this type of application
can greatly benefit from distributed high performance
computing (HPC) infrastructures such as Cloud computing.

Could Computing has been studied as the next generation
architecture of IT enterprise by providing cost-effective,
scalable, on-demand, elastic provisioning and distributed

computing infrastructure [9]. To execute a scientific workflow
in the Cloud, scientific workflow tasks and datasets should be
partitioned, distributed, and assigned to various execution sites
in the Cloud. The advantages of using Cloud computing for
scientific workflows are summarized as follows [7]: 1)
providing large amount of storage space and computing
resources; 2) improving resource utilization by allocating
resources on as-needed basis; 3) providing a much larger room
for the trade-off between performance and cost.

 Since scientific applications become more and more data
intensive, data management is sometimes more critical than
other resource management in Cloud computing. Scientific
datasets are often in terabytes or even petabytes in size,
creating the need for dedicated virtual machines just for data
storage purposes [14]. Therefore, data management needs to
utilize an effective data placement strategy in order to
maximize data locality and minimize data migration between
virtual machines in the Cloud. Data placement should be
applied such that once workflow tasks are partitioned and
assigned to a virtual machine in the Cloud, their required
datasets are already stored in the same virtual machine. In large
workflows, it is practically impossible to store all of the
required datasets of tasks in one virtual machine due to the
storage capacity limitation of virtual machines and so data
movement is necessary to execute scientific workflows. The
main goal of data placement is to minimize the total data
movement between workflow tasks because “moving
computation to data is often cheaper than moving data to
computation” [1].

Scientific workflow typically models and analyzes complex
scientific research experiments along with huge volumes of
datasets. These large datasets are physically distributed and
placed on different sources by users over the Internet. On the
other hand, new advancements in IT technology bring the
capability of collecting and accessing these huge amounts of
information and datasets not only by human beings but also by
computers. Big datasets are difficult to manage by traditional
data management tools and strategies. Therefore big data
technology is becoming the main focus in scientific computing
research such as the scientific workflow domain recently [2].
Big Data can be defined by 5 characteristics, called the five
V’s: Volume, Value, Velocity, Variety, and Veracity [15].

2015 IEEE First International Conference on Big Data Computing Service and Applications

978-1-4799-8128-1/15 $31.00 © 2015 IEEE

DOI 10.1109/BigDataService.2015.70

105

The most important feature of Big Data is volume, which
characterizes the size of datasets such as records, tables or files.
Value reflects the usefulness of a dataset. Analyzing and
processing of collected big datasets for the purpose of scientific
discovery is the main motivation for researchers that use scientific
workflow technology. Velocity applies to the enormous volume of
dataset that come in/out with high speed from different sources.
Variety is about vast different dataset formats and large number of
diverse dataset sources to integrate. And finally, veracity is related
to datasets consistency/certainty and trustworthiness that can
applied in various stages of data management like dataset
collecting and processing stages. Our study is about the volume
aspect of Big Data and how it operates to partition, distribute, and
place huge size of different datasets into virtual machines in the
Cloud such that the most interdependent datasets are clustered
and placed to the same virtual machine.

In this paper, we propose BDAP, an evolutionary algorithm
(EA) which is a generic population-based metaheuristic
optimization strategy for data placement in distributed
scientific workflows. The main goal is to minimize the dataset
movement between virtual machines during the execution of a
workflow under the constraint of virtual machine storage
capacity.

Example I. Let’s consider an example to show how a
scientific workflow can be executed in a Cloud computing
environment. Figure I illustrates a sample scientific workflow
with five tasks, five original datasets and five generated
intermediate datasets [14]. Figure II shows an instance of its
virtual machines configuration in the Cloud. In this example,
tasks t1 and t2 as well as datasets, d1 and d3 were assigned to
virtual machine 1, VM1. Similarly, tasks t3 and t4 were assigned
to VM2 as well as datasets, d2 and d4. Once we execute the
workflow, tasks t2 needs transferring dataset d2 from VM2 to
VM1 to complete its process. However there is no need to
move any other original datasets from other virtual machine to
VM2 to run task t3 because all of its required original datasets,
d2 and d4 are already placed in VM2. Furthermore, t3 only
required transferring the output of task t1, d1 from VM1 to VM2
in the run-time stage. We propose a data placement strategy for
scientific workflows in this paper. We explain our proposed
strategy for data placement in section 3 in detail.

To come up with a data placement of scientific workflows
in the Cloud computing infrastructure, our proposed strategy,
BDAP, clusters the most interdependent datasets (workflow
tasks) together and store them possibly in the same virtual
machine in the Cloud. BDAP applies the one algorithm for
placement of original and generated intermediate datasets.

A random set of data placement schemes are generated in
the first step. In the next step, BDAP computes and compares
the generated schemes by applying a defined heuristic function
and return the best scheme. The heuristic function is based on
the data interdependency within and between the virtual
machines in the Cloud. The best scheme is the one which
maximizes the data interdependency within each virtual
machine and minimizes the data interdependency between
virtual machines. After placing the datasets, BDAP assigns and
schedules workflow tasks into corresponding virtual machines.

Figure I. A scientific workflow with five tasks ሼtଵ, tଶ, tଷ, tସ, tହሽ and five
datasets ሼdଵ, dଶ, dଷ, dସ, dହሽ. The output of task ti is denoted by d’i. The input
datasets of task tଵ are ሼdଵ, dଷሽ, tଶ are ሼdԢଵ, dଶ, dଷሽ , tଷ are ሼdԢଵ, dଶ, dସሽ, tସ are ሼdᇱ2, dᇱ3, dଶ, dସ, dହሽ and tହare ሼdԢସ, dହሽ.

Figure II. A virtual machine configuration in the Cloud with three virtual
machines for workflow of Example I. Datasets ሼdଵ, dଷሽ and tasks ሼtଵ, tଶሽ were
placed and assigned in VM1. Datasets ሼdଶ, dସሽ and tasks ሼtଷ, tସሽ were placed
and assigned in VM2. Similarly, dataset ሼdହሽ and tasks ሼtହሽ was placed and
assigned in VM3.

Please note although BDAP can be used for task
assignment, the workflow scheduling is out of the scope of this
paper. BDAP does not apply any specific strategy for the order
(either sequential or parallel) execution of workflow tasks.
BDAP can be used by any current workflow scheduling
algorithms to improve the workflow throughput. In this paper,
we simply execute workflow tasks in a sequential order to
evaluate BDAP.

The rest of the paper is organized as follows: in Section 2
we define and formalize our system model. In Section 3 we
explain our data placement strategy in detail. Then in Section
4, the experimental results are shown and discussed. Section 5
presents implementation of a scientific workflow in the
FutureGrid. Section 6 presents related work. Finally,
conclusion and future work are presented in Section 7.

II. FORMALIZING WORKFLOW DATA PLACEMENT

To model the Cloud computing environment, we consider I
distributed virtual machines in the Cloud as the execution sites
to execute workflows. Each virtual machine can be provided
by different Cloud Computing Providers (CCP) such as
Amazon EC2, Google App Engine, and Microsoft Azure.
Although CCPs normally have their own data and

106

computation placement strategy in order to store data and
assign computation jobs to proper virtual machines,
sometimes users (e.g., scientists) have concerns about their
own datasets (e.g., data security or too large data or
requirement for specific data processing utilities and
equipment). Such users prefer to keep and store their data in a
particular virtual machine and not allowed to move their data
to the other virtual machines. This type of dataset is called
fixed-location datasets.

For addressing these scientific user’s concerns and
managing fixed-location datasets, users need to have private
execution sites or to be able to add their own local
computation facilities as virtual machines. In that way, we
need to apply a new data placement strategy to address the
fixed-location datasets and minimize the total data movement
across dedicated virtual machines in the Cloud.

To minimize data movement between virtual machines in
the Cloud, we cluster the virtual machines such that the placed
datasets have the highest data interdependency within each
virtual machine as well as the lowest data interdependency
between virtual machines. In the rest of this section, we model
our data placement solution in detail. Table I summarizes all
the used symbols and notations in this paper.

To execute a scientific workflow in Clouds, we need to
model Clouds first. A Cloud computing environment is
modeled as follows:

Definition 2.1 (Cloud Computing Environment C). A Cloud
computing environment C is a 3-tuple C ൌ ሺVM, SC, DTRሻ ,
where

• VM is a set of virtual machine in the Cloud vm୧
(i ൌ 1, 2, … , I)

• SC: VM ՜ Rା is a storage capacity function.
SC ሺvm୧ሻ, vm୧ א VM gives the maximum available
storage capacity of virtual machine vm୧ in the Cloud
computing environment C. It is measured in some pre-
determined unit such as mega-bytes, giga-bytes or tera-
bytes. Rା is the set of positive real number.

• DTR: VM ൈ VM ՜ Q଴ା is the data transfer rate function. DTRሺvm୧ଵ, vm୧ଶሻ, vm୧ଵ, vm୧ଶ א VM gives the data
transfer rate between two virtual machines vm୧ଵand vm୧ଶ. It is measured in some pre-determined
unit such as mega-bytes, giga-bytes per second. Q଴ା is
the set of positive rational number.

For solving the complex scientific problems, scientists are
able to create and run their own scientific workflows
simultaneously. Each individual workflow contains a set of
tasks that consume various datasets and may produce
intermediate datasets as well. Those produced datasets will be
sent to other tasks as their inputs by following the data flow
logic. A scientific workflow is formalized as follows:

Definition 2.2 (Scientific Workflow W). A scientific
workflow W can be modeled formally as a 6-tuple that consists
of three sets and two functions as follows: W ൌ ሺT, D, Dᇱ, S, TS, DSሻ

• T is the set of workflow tasks. Each individual task is
denoted by t୩, T ൌ ሼtଵ, tଶ, tଷ, … , tKሽ.

• D is the set of input datasets for workflow W. Each
individual dataset is denoted by d୨, D ൌ ൛dଵ, dଶ, … , dJൟ.

• DԢ is the set of output datasets for workflow W. The
total number of output datasets is equal to the total
number of workflow tasks as each workflow task, t୩
generates one output dataset, d୩ which can flow to the
other tasks as the input dataset. Each individual output
dataset is denoted by dԢ୩, DԢ ൌ ሼdԢଵ, dԢଶ, … , dԢKሽ.

• S: D ׫ DԢ ՜ Rା is the dataset size function.

• S ሺd୨ሻ, d୨ א D ׫ DԢ returns the size of original or
generated dataset d୨. The size of a dataset is defined in
some pre-determined unit such as mega-bytes, giga-
bytes or tera-bytes. Rା is the set of positive real
number.

• TS: D ׫ Dᇱ ՜ T is the dataset-task function.
TS൫d୨൯, d୨ א D ڂ DԢ returns the set of workflow tasks
that consume d୨ as their input.

• DS: T ՜ D ׫ Dᇱ is the task-dataset function.
DS ሺt୩ሻ, t୩ א T returns the set of datasets that are
consumed by ݐ௞ as its input. The datasets can be either
original or generated datasets.

To evaluate and compare BDAP with the others proposed
algorithms Workflow Communication Cost is defined as
follows:

Definition 2.3 (Workflow Communication Cost, WCC).

If dataset ௝݀ is required to transfer from virtual machine ݉ݒ௜ଵ
to ݉ݒ௜ଶ then the data movement cost of ௝݀ is defined as

൫ܥܯܦ ௝݀, ,௜ଵ݉ݒ ௜ଶ൯݉ݒ ൌ ቐ 0, ݂݅ ݅ଵ ൌ ݅ଶܵ൫ ௝݀൯ܴܶܦሺ݉ݒ௜ଵ, ௜ଶሻ݉ݒ , ݂݅ ݅ଵ ് ݅ଶ ሺ1ሻ

 Given a workflow W and Cloud computing C, workflow
communication cost is equal to the total data movement cost
for executing workflow W in C is defines as follows:

,ሺܹܥܥܹ ሻܥ ൌ ෍ ෍ ൫ ௝݀ܥܯܦ , ,௜ଵ݉ݒ ௐא஽ௌሺ௧ೖሻ௧ೖא௜ଶ൯ௗೕ݉ݒ
௄

௞ୀଵ ሺ2ሻ

WCC gives the total data movement within executing the
whole workflow in the Cloud C. In the remainder of this
section, we define and model the problem and our solution.
Our solution is based on the clustering technique. The three
main concepts in clustering are objects which need to be
clustered, clusters and a separation measure to compute the
similarity among the objects. In this work, datasets are
considered as the objects and virtual machines in the Cloud are
considered as the clusters. The most important concept is
defining a good separation measurement to cluster the most
similar objects together to meet the objective goal.

107

TABLE I. SYMBOLS AND NOTATIONS SUMMARY

Notations Description ࡹࢂ The set of virtual machines ࢜࢏࢓ The ith virtual machine in VM ࡯ࡿሺ࢜࢏࢓ሻ The storage capacity of virtual machine vm୧ ࡰ The set of datasets ࢊࢋ࢞࢏ࢌࡰ The set of fixed datasets, Df୧୶ୣୢ ك D ࢐ࢊ The jth dataset in D ࡿሺ࢐ࢊሻ The size of dataset d୨ ࢀ The set of Tasks ࡿࡰሺ࢚࢑ሻ The set of datasets as the input of task t୩ ࡿࢀሺ࢐ࢊሻ The set of tasks which get dataset d୨ as the input ࡾࢀࡰሺ࢜࢏࢓૚, ૛ሻ The data transfer rate between two virtual࢏࢓࢜
machines, vm୧ଵand vm୧ଶ ࢖ࢊሺ࢐ࢊ૚, ࢐૛ሻ The data interdependency between datasets d୨ଵ ࢊ
and d୨ଶ ࡼࡰ The data interdependency matrix of D ࢸ The J-element vector of datasets placement
scheme which J is the number of workflow
datasets. ࢸሺ࢐ࢊሻ The virtual machine to which dataset ௝݀ is
assigned in the placement scheme ࡼ ߖ The set of data placement schemes

The goal of this study is minimizing data movement among
virtual machines. Therefore, we consider data interdependency
as the separation measurement. For this, two datasets are
interdependent and should be collocated in the same virtual
machine if they are simultaneously needed as inputs by many
tasks. The definition for the interdependency of a pair of
datasets is as follows:

Definition 2.3 (Data Interdependency). We consider the
number of common tasks that take a pair of datasets as input to
define the data interdependency of the datasets. Data
interdependency value is divided by the total number of
workflow tasks in order to be normalized in the range of [0 1].
Formally, given two datasets ௝݀ଵ and ௝݀ଶ, the data
interdependency is calculated by: ݀݌൫ ௝݀ଵ, ௝݀ଶ൯ ൌ หܶܵሺ݀௝ଵሻ ת ܶܵሺ݀௝ଶሻห|ܶ| ሺ3ሻ

 For instance, if the set of tasks that consume dଵ is TSሺdଵሻ ൌ ሼtଵ,tଶሽ and dଶ is TSሺdଶሻ ൌ ሼtଶ,tଷ, tସሽ then the data
interdependency between dଵ and dଶ is dpሺdଵ, dଶሻ ൌ |TSሺୢభሻתTSሺୢమሻ||T| ൌ | ሼ୲భ,୲మሽת ሼ୲మ,୲య,୲రሽ ||ሼ୲భ,୲మ,୲య,୲ర,୲ఱሽ| ൌ ଵ ହ ൌ 0.20. In this way,
two datasets are interdependent once they have at least one
common task consuming both of them. Two datasets have a
higher interdependency when they are used by more common

tasks and the greater the number of common tasks is, the higher
is the data interdependency of datasets.

 To maximize data locality, it is necessary to pre-cluster
the datasets initially. In the first step, we calculate the data
interdependency of all the workflow datasets and generate the
data interdependency matrix (DM). In the interdependency
matrix, rows and columns are the workflow datasets and the
value of interdependency matrix is the data interdependency
between two datasets. For instance, data interdependency
matrix of workflow in Example1 is as follows:

DM ൌ
dଵdଶdଷdସdହdଵᇱdଶᇱdଷᇱdସᇱ ۈۉ

ۈۈۈۈ
212ۇ 131 2 0 0 1 0 0 0 1 2 1 2 1 1 02 0 0 1 0 0 00 2 0 2 1 1 1 1 001000

12110 01000
11110

2 0 2 1 1
02000

20211 10110
10101 ۋی

ۋۋۋۋ
ۊ

 BDAP partitions and distributes the original datasets into
all appropriate virtual machines in the Cloud. Then the related
tasks will be assigned to the corresponding virtual machine so
that their required datasets are stored there. In this way, the
total amount of data movement between virtual machines is
decreased and the overall workflow execution time will be
reduced. Data placement scheme is defined to represent the
place of each workflow dataset in a virtual machine. A data
placement scheme is defined formally as follows:

Definition 2.4 (Data Placement Scheme શሻ. Suppose
there are I virtual machines and J datasets, a data placement
scheme is represented by a J-element vector Ψ such that Ψ൫d୨൯ indicates the virtual machine to which d୨ is placed. For
example the data placement scheme of Example I is Ψ ൌሺ1, 2, 1, 2, 3, 1, 1, 2, 2ሻ and it means datasets dଵ , dଷ, dଵכ and dଶכ
are placed in virtual machine vmଵ (Ψሺdଵሻ ൌ Ψሺdଷሻ ൌΨሺdଵᇱ ሻ ൌ Ψሺdଶᇱ ሻ ൌ vmଵ), datasets dଶ , dସ, dଷᇱ and dସᇱ in virtual
machine vmଶ (Ψሺdଶሻ ൌ Ψሺdସሻ ൌ Ψሺdଷᇱ ሻ ൌ Ψሺdସᇱ ሻ ൌ vmଶ)
and the dataset dହ in virtual machine vmଷ (Ψሺdହሻ ൌ vmଷ).

Definition 2.5 (Fixed-Location Datasets ۲܌܍ܠܑ܎). Given
the set of datasets, fixed-location datasets Df୧୶ୣୢ ك D is a
subset of D such that they have pre-determined allocations and
cannot be moved. Formally suppose Df୧୶ୣୢ ൌ ൛ d୨ଵ, d୨ଶ, … , d୨୫ൟ ك D then ߖ൫d୨ଵ൯ ൌ vm୧ଵ, Ψ൫d୨ଶ൯ ൌ vm୧ଶ, … and Ψ൫d୨୫൯ ൌ vm୧୫ ,ሼ vm୧ଵ, vm୧ଶ, … , vm୧୫ሽ ك VM
the other datasets, ܦ െ .௙௜௫௘ௗ, are called flexibleܦ

 We consider all the workflow tasks are flexible and there
are no fixed tasks because moving computation task to datasets
is often cheaper than moving datasets to computation task
nodes. To define a good measurement to compare separation
between virtual machines, data interdependency within and
between virtual machines are defined as follows:

108

Definition 2.6 (Within-VirtualMachine Data
Interdependency ܅۲ۻ܄).

ሻߖௐሺܦܯܸ ൌ ෍ ෍ ൫݌݀ ௝݀ଵ, ௝݀ଶ൯ అ൫ௗೕభ൯ ୀ ௩௠೔అ൫ௗೕమ൯ ୀ ௩௠೔

ூ
௜ୀଵ ሺ4ሻ

where dp൫d୨ଵ, d୨ଶ൯ is the data interdependency between task d୨ଵand d୨ଶ , I is the maximum number of virtual machines in
the Cloud.

Definition 2.7 (Between-VirtualMachine Data
Interdependency ࡮ࡰࡹࢂ).

ሻߖ஻ሺܦܯܸ ൌ ෍ ෍ ൫݌݀ ௝݀ଵ, ௝݀ଶ൯ అ൫ௗೕభ൯ୀ ௩௠೔భఅ൫ௗೕమ൯ୀ ௩௠೔మ

I
௜భஷ௜మ ሺ5ሻ

To achieve the data placement goal, BDAP uses heuristic
information for its search direction of finding the best data
placement scheme. Heuristic information should consider both
within and between virtual machine interdependency. The
heuristic is defined in BDAP as follows:

Definition 2.8 (Data Interdependency Greedy DG). The
DG heuristic biases BDAP to select the data placement scheme
with higher data interdependency. It is defined as: ܩܦሺߖሻ ൌ ሻߖௐሺܦܯܸ ൅ ሻߖ஻ሺܦܯ1ܸ ൅ 1 ሺ6ሻ

 In this formula, the numerator measures Within-
VirtualMachine Data Interdependency and the denominator
measures the Between-VirtualMachine Data Interdependency.
The bias 1 is set to avoid divided-by-zero in the case that the
data interdependency between virtual machines get zero. A
good data placement scheme has a higher DG. Therefore the
output of BDAP is a data placement scheme with the highest
DG.

 In our system model we consider two types of system
constraints in terms of data which are defined as follows:

Definition 2.9 (Data Placement Scheme Legality
Constraints). Two types of illegal data placement schemes are
considered in BDAP:

1) Virtual machine storage capacity constraint: The total
amount of placed datasets into a virtual machine should be less
than the available storage capacity of the virtual machine as it
is impossible to fit all those datasets into the same virtual
machine.

2) Non-replication constraint: Once a dataset is placed into
a specific virtual machine, it is not allowed to place it into
another virtual machine as data and task replication is not in the
scope of this version of BDAP.

Definition 2.10 (Data Placement Solution). The data
placement solution for scientific workflow, W, to execute in a
Cloud computing environment, C, is to select a data placement
scheme Ψ א P to minimize the workflow communication cost
(WCC) under the virtual machine storage capacity and non-

replication constraints. In the next section, we explain our data
placement strategy, BDAP, in detail.

III. PROPOSED DATA PLACEMENT ALGORITHM

The main steps of BDAP are depicted in Figure III. In the
first phase, BDAP applies a metaheuristic optimization
algorithm to place the original data. The main goal is to
minimize workflow communication cost by minimizing the
data movement between virtual machines in the Cloud within
running a workflow. The main steps of this phase which
applies in design-time are shown in the flowchart of Figure III.
BDAP starts with calculating the data interdependency matrix.
Then, it generates a set of legal data placement schemes
randomly and calculates their heuristic values. In the following,
for each data placement scheme, BDAP applies three main
operators, Selection, Crossover, and Mutation sequentially to
generate possibly better schemes with higher heuristic values.
At the end of the algorithm, the best observed data placement
scheme is recorded in Ψୠୣୱ୲ and will be returned as the output
of BDAP. Selection, crossover and mutation operators are
defined as follows:

Definition 3.1 (Selection SE). Selection is the process of
choosing two schemes for recombination and generation two
new schemes. There are many methods to perform selection.
We use the Roulette Wheel Selection techniques for BDAP. In
this selection operator, the probability to choose a certain
scheme is proportional to its heuristic value.

Definition 3.2 (Crossover CO). This operator combines
two selected schemes to reproduce two new schemes. The idea
is that the new generated schemes may be better and have
higher heuristic value if they take the best characteristics from
their parent schemes. For instance, suppose Ψ୪ଵ ൏1, 2, 1, 2, 3 ൐, Ψ୪ଶ ൏ 2, 2, 1, 3, 1 ൐ and the selected row
number to crossover is 3 then Ψ୪ଵᇱ ൏ 1, 2, 1, 3, 1 ൐ ܽ݊݀ Ψ୪ଶᇱ ൏2, 2, 1, 2, 3 ൐.

Definition 3.3 (Mutation MU). After crossover, BDAP
applies mutation operator to an individual scheme to generate a
new version of it such that a virtual machine position in the
scheme have been randomly changed. Mutation prevents
BDAP to be trapped in a local maximum heuristic value. For
example, suppose Ψ୪ ൏ 1, 2, 1, 2, 3 ൐ and the select row
number is 4 and generated randomized number for position 4 is
3 then ΨԢ୪ ൏ 1, 2, 1, 3, 3 ൐.

For applying data placement strategy and analyzing the data
interdependency, the whole workflow has to be designed. It
means all tasks and datasets of the scientific workflow have to
be specified. The BDAP algorithm is outlined in Algorithm I.

In the first step, BDAP generates popsize number of
feasible and valid data placement schemes randomly with the
locations for fixed-location datasets fixed. It also calculates
the heuristic value of each individual scheme (lines1-5). The
position numbers of the fixed-location datasets in the
generated data placement scheme are fixed and will not
change through the whole algorithm. In the next steps, BDAP
applies three main operators to generate new schemes with a
hopefully higher heuristic values until it reaches the max
number of iterations.

109

Algorithm I. Big Data Placement (BDAP) – Original Datasets
Input:
 D: set of workflow datasets,
 DP: data interdependency matrix,
 popsize: size of population ,
 er: rate of elitism,
 cr: rate of crossover,
 mr: rate of mutation,
 num_iteration: number of iterations,

Output:
 The best data placement scheme, ߖ௕௘௦௧

1. Begin
2. for i = 1 to popsize do
ߖ .3 ՚ Generate a legal data placement scheme randomly;
݌݋ܲ .4 ՚ ൏ ,ߖ ሻߖሺܩܦ ൐;
5. end for
6. idx = 0;
7. while (idx ൑ num_iteration) do
8. ne = popsize ൈ er; // number of elitism
ா݌݋ܲ .9 ՚ The best ne data placement schemes in Pop;
10. nc = popsize * cr; // number of crossover
11. for i =1 to nc do
12. randomly select two data placement scheme ߖ஺ and ߖ஻ from

Pop;
13. generate ΨC and ΨD by one-point crossover for flexible

 datasets of ߖ஺ and ߖ஻;
஼݌݋ܲ .14 ՚ ൏ ,஼ߖ ሺΨCሻܩܦ ൐;
஼݌݋ܲ .15 ՚൏ ,஽ߖ ሺΨ஽ሻܩܦ ൐;
16. end for
17. nm= popsize ൈ mr;// number of mutation
18. for i =1 to nm do
19. select a data placement scheme ߖ௝ from ܲ݌݋஼;
௝ᇱߖ .20 ՚ mutate randomly a flexible virtual machine position

number in ߖ௝ ;
21. if ߖ௝ᇱ is illegal
22. update ߖ௝ᇱ with a data placement scheme by repairing ߖ௝ᇱ;
23. end if
௝ߖ .24 ՚ ߖ௝ᇱ;
25. end for
26. Pop ՚ ܲ݌݋ா and ܲ݌݋஼;
27. idx = idx +1;

28. end while
29. return the best data placement scheme ߖ௕௘௦௧;
30. end

 First, it selects ne = popsize ൈ elitism_rate number of
scheme with the highest heuristic value and saves them in
the ܲ݌݋ா (lines 9-10), these high-value schemes will transfer
directly to the next generation of schemes to guarantee the
convergence of BDAP. We apply the fitness proportionate
selection, roulette wheel selection, for this step. The idea
behind the roulette wheel selection technique is that each
scheme is given a chance to select in proportion to its heuristic
value. Then, it applies the crossover function and computes
the heuristic value of the new generated schemes (lines 11-16).
In the last step, BDAP applies the mutation operator for a
randomly selected scheme along with computing its heuristic
value (lines 17-25). In the crossover and mutation phases,
BDAP does not change the number of virtual machine position
for the fixed-location datasets and applied those function only
on flexible datasets.

Figure III. Flowchart of BDAP.

The idea behind the roulette wheel selection technique is
that each scheme is given a chance to select in proportion to
its heuristic value. Then, it applies the crossover function and
computes the heuristic value of the new generated schemes
(lines 11-16). In the last step, BDAP applies the mutation
operator for a randomly selected scheme along with
computing its heuristic value (lines 17-25). In the crossover
and mutation phases, BDAP does not change the number of
virtual machine position for the fixed-location datasets and
applied those function only on flexible datasets. These three
operators apply to the schemes till it reaches a certain number
of iterations, a parameter defined by the user at the beginning
of the algorithm. In the last step, the best data placement
scheme Ψୠୣୱ୲ is returned as the output of BDAP.

IV. EXPERIMENTS AND DISCUSSION
In this section, we present and discuss the simulation results

and compares BDAP with the most competitive and Random
approaches.

A. Simulation Setting

To evaluate performance of our proposed data placement
approach, BDAP, we compare it with Yuan’s work and
random strategies. Yuan’s work is the one of the most
competitive algorithms in this field. It is a K-means based
clustering algorithm which applies a heuristic binary
clustering algorithm to precluster datasets into their
appropriate virtual machines. Then, it greedily assigns the
workflow tasks to each virtual machine such that it stores the
most of its input dataset. Once an intermediate dataset is
generated, it places it to the virtual machine that has the most
interdependent datasets with the newly generated dataset.

 We simulate a Cloud computing environment on the
Wayne State University’s high performance Grid Computing.
We use eight grid computation nodes along with total storage
capacity of 100 GB and compared the three algorithms by
simulating a variety of real and synthetic workflows. We test
BDAP using five synthetic workflow applications based on
real scientific workflows [3]: Montage, CyberShake,
Epigenomics, LIGO and SIPHT (Figure IV). These workflow
applications are developed through the Pegasus workflow
management system for different research domains like
bioinformatics and astronomy. We select the large-size of each
workflow with about 1000 number of tasks and assume each
task can be executed on every virtual machines.

Yes

No

Calculate Data
Interdependency
Matrix (DM)

Generate a set of
legal data placement
scheme randomly (P)

Compute the
heuristic value of
each scheme (DG)

Termination
Conditions?

Return the best data placement scheme Ψୠୣୱ୲

Apply Selection (SE),
Crossover (Co) and Mutation
(MU) to generate a new
population of legal data
placement schemes

110

For our experiments, we run 100 times each of the selected
workflows along with assigning five different numbers of
datasets to their tasks randomly. The numbers of datasets are 5,
10, 25, 50 and 100, and dataset sizes are uniformly distributed
in the range of [1TB, 100TB]. In addition, we consider five
size numbers of virtual machines, 5, 10, 15, 20 and 25 in the
range of [200TB 1PB] of storage capacity (as shown in Table
II). Virtual machines storage capacities are selected in a
uniformly distributed manner too. We demonstrate the
performance of our proposed data placement algorithm and
Yuan and Random approaches in terms of the average of the
workflow communication cost defined in section 3. In our
experiments, we assume that the data transmission rates among
all virtual machines are fixed. Table III shows the value of
parameters using in BDAP.

We do our experiments for two different scenarios, one
scenario with considering 20% of fixed-location datasets and
the other one without considering fixed-location datasets and
consider the average of it.

B. Results

Figure V shows the Workflow Communication Cost
(WCC), in terms of hour by varying the number of datasets and
fixing the number of virtual machines. WCC is increased by
increasing the number of datasets in all three strategies.
However, it can be seen clearly that our strategy reduces WCC
compared to the other strategies. This results in greater
improvement margin with more number of datasets.

 In the next step we calculate WCC by varying the numbers
of virtual machines and fixing the number of datasets (Figure
VI). Although WCC is increased by increasing the number of
virtual machines, the increasing rate of our strategy is slower
than the others. This results in greater improvement margin
with more number of virtual machines.

 We demonstrate performance of BDAP in terms of
workflow communication cost by varying the number of
datasets and virtual machines for five different types of
workflows. We compare the BDAP strategy with Yuan as well
as with random strategies. The result shows that BDAP
manages to decrease effectively workflow communication cost
more than Yuan and Random approaches.

V. IMPLEMENTATION

In our DATAVIEW system [13], we integrated the
scientific workflow engine subsystem with FutureGrid
academic research cloud provider to automatically provision
virtual machines to execute scientific workflows in the Cloud.
We implemented bash scripts to automatically provision VMs
by first creating new VM images in the FutureGrid framework
through configuring both hardware and software stack.
Workflows execution is transparent to our data scientists.
They can just create and run any arbitrary workflow and the
system deploys a set of virtual machines, datasets and moves
workflow tasks to the corresponding virtual machine.

Figure IV: The structure of five realistic scientific workflows [3].

TABLE II. DESCRIPTION OF DATASET AND VIRTUAL MACHINE OF THE
EXPERIMENT.

Overall dataset and virtual machine

of datasets

Dataset size

of virtual machines

Virtual machines storage capacity

[5,10,25,50,100]

1TB – 100TB

[5,10,15,20,25]

200TB – 1PB

TABLE III. DEFAULT SETTING FOR BDAP ALGORITHM.

Overall dataset and virtual machine

Population size

Initial population

Maximum generation

Crossover probability

Mutation probability

Maximum iteration

100

Randomly generation

100

0.8-0.9

0.3-0.5

1000

In design time, we created the sophisticated XML parser to
parse the workflow specification, which is stored in the XML
format. The XML parser extracted all workflow tasks, a set of
input data products and a set of output datasets that will be
generated at run time. The XML parser generated output
(dpID, taskID) key/value pairs that contain mapping details to
map datasets to corresponding workflow tasks. BDAP
algorithm validate the (key, value) pairs to identify the optimal
mapping of datasets and workflow tasks to the corresponding
virtual machines.

111

 Figure V. Workflow Communication Cost by varying the number of datasets.

Figure VI. Workflow Communication Cost by varying the number of virtual machines.

112

In running time, DATAVIEW provisioned a set of virtual
machines in FutureGrid and deployed datasets to the
corresponding virtual machines based on the output of BDAP.
In our DATAVIEW system, we used files as a dataset type
and used SCP command to move actual files from our
DATAVIEW system to the provisioned virtual machines. In
the next step, we assigned all the workflow tasks to the
provisioned virtual machines. After assigning workflow tasks
and datasets, the workflow was executed and intermediate
datasets were moved to the corresponding virtual machines.
Data flow between each workflow task was implemented by
the SCP command. The final dataset was moved from its
virtual machine to the DATAVIEW system and the results
were published to the user. In this way, all low-level details
were hidden from the data scientists and only the intermediate
and final data products generated by the workflow were
visible to data scientists. Table IV shows some of the result of
applying BDAP for the execution of workflow in Example I.

TABLE IV. SOME RESULT OF BDAP RUNNING.
The best data placement scheme in the

First population <d#, vm#> Last (10th) population <d#, vm#>

<d1,vm1><d2,vm2><d3,vm3><d4,vm3

><d5,vm1><d’1,vm2><d’2,vm1><d’3,v
m1><d’4,vm3>

DG = 0.1671 and WCC = 0.0097 hr

<d1,vm3><d2,vm1><d3,vm3><d4,vm
1><d5,vm2><d’1,vm1><d’2,vm2><d’
3,vm1> <d’4,vm2>

DG = 3.4032 and WCC = 0.0041 hr

<d1,vm2><d2,vm1><d3,vm3><d4,vm1

><d5,vm3><d’1,vm3><d’2,vm1><d’3,v
m2> <d’4,vm3>

DG = 0.2513 and WCC = 0.0083 hr

<d1,vm1><d2,vm2><d3,vm1><d4,vm
2><d5,vm3><d’1,vm2><d’2,vm1><d’
3,vm3> <d’4,vm2>

DG = 3.4678 and WCC = 0.0033 hr

<d1,vm2><d2,vm2><d3,vm1><d4,vm3
><d5,vm3><d’1,vm3><d’2,vm3><d’3,
vm1> <d’4,vm3>

DG = 0.3165 and WCC = 0.0081 hr

<d1,vm2><d2,vm2><d3,vm1><d4,vm
2><d5,vm3><d’1,vm2><d’2,vm3><d’
3,vm3> <d’4,vm1>

DG = 3.3692 and WCC = 0.0042 hr

VI. RELATED WORK
Previous research studies for distributed computing

environment have been mainly focused on the performance
modeling and optimization of job scheduling and task
allocation. But due to the rapid increase in the size of available
data over the internet and the emerging field of Big Data, data
placement becomes a fundamental spot in the Cloud recently.
Kosar et al., [12] proposed a framework for distributed
computing systems, which considered the data placement
subsystem as an independent module along with computation
subsystems. In their proposed model, data placement jobs can
be queued, scheduled, monitored, managed and even
checkpointed. Kayyoor et al., [11] considered the data
placement and replication problems together for the
distributed environments. They claimed minimizing of query
latencies is not a critical issue in many scenarios of analytical
workloads, so they tried to minimize the average number of
using computation nodes by grouping the most interdependent
data together based on their occurrences of the common query
accesses. Chervenak et al., [5] explored the advantages of
separation of data placement as a service from workflow
management systems. By applying an autonomous data
placement service along with data replication service, they

evaluate and display the benefits of pre-staging data compare
to the data stage in and out strategies of the Pegasus workflow
management systems. However, none of the above studies
decrease the data movement among virtual machine in the
Cloud.

Some of the workflow management systems have been
extended to execute scientific workflow in Clouds. Pegasus is
designed to execute scientific workflows on a number of
distributed resources such as local machines, clusters or
Cloud. Nimbus is an integrated set of tools which allows
scientific users to deploy a cluster into infrastructure Clouds to
execute their scientific workflows. Eucalyptus is an open
source Cloud management software to create on-demand, self-
service private Cloud resources.

In Catalyurek et al., [4] workflows were modeled by the
hypergraph concept and a hypergraph portioning technique, k-
way partitioning, is applied to minimize the cutsize. In that
way, they cluster the workflow tasks as well as their required
data in the same execution site. One of the closest works to
our strategy is Yuan et al., [14], in which they applied a
greedy binary clustering to precluster datasets; then they
greedily assigned the workflow tasks to an execution site that
contains the most of the input datasets. At the end, once an
intermediate dataset was generated, they placed it to the
execution site which has the most interdependent dataset.
Although their approach placed the most interdependent
dataset together and can reduce data movement, the algorithm
is greedy and it clustered the data dependency matrix into two
parts in each iteration and so their clustering technique was
sensitive to the selection point in any iteration. The other close
work to our study is Er-Dun et al., [8] in which they applied a
genetic algorithm to find their data placement solution along
with load balancing factor. Their approach reduced data
movement, however, they did not consider data
interdependency between virtual machines and also they did
not consider task assignment.

VII. CONCLUSIONS AND FUTURE WORK
 We proposed BDAP, a data placement strategy for Cloud-

based scientific workflows. BDAP minimized the total amount
of data movement between virtual machines during the
execution of the workflows. Our extensive experiments and
comparisons indicated that BDAP outperformed other
proposed algorithms on minimizing data movement.
Scientific workflows consume and produce huge datasets.
Applying data replication can reduce data movement as well.
So in future work, we plan to improve BDAP by applying data
replication techniques. In addition, we considered data
placement for executing of a single workflow. However, in real
world, multiple workflows can be executed concurrently.
Therefore, we plan to extend BDAP strategy to achieve data
placement for the execution of multiple workflows
simultaneously.

ACKNOWLEDGMENT
This work is supported by National Science Foundation,

under grant NSF ACI-1443069. In addition, this material is
based upon work supported in part by the National Science
Foundation under Grant No. 0910812.

113

REFERENCES

[1] D. Agrawal, A. E. Abbadi, S. Antony, and S. Das, "Data management
challenges in cloud computing infrastructures." In Databases in
Networked Information Systems, pp. 1-10, 2010.

[2] J. Wang, D. Crawl, I. Altintas, W. Li, "Big Data Applications Using
Workflows for Data Parallel Computing," Journal of Computing in
Science and Engineering, vol. 16, no. 4, pp. 11-21, 2014.

[3] Juve, G., A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, "Characterizing and Profiling Scientific Workflows", Future
Generation Computer Systems, vol. 29, no. 3, pp. 682-692, 2013.

[4] U. V. Catalyurek, K. Kaya and B. Ucar, "Integrated Data Placement and
Task Assignment for Scientific Workflows in clouds," In Proceedings of
the fourth international workshop on Data-intensive distributed
computing, pp. 45-54, 2011.

[5] A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S. Bharathi, G.
Mehta, and K. Vahi, "Data Placement for Scientific Applications in
Distributed Environments," In Proceedings of the 8th IEEE/ACM
International Conference on Grid Computing, pp. 267-274, 2007.

[6] E. Deelman and A. Chervenak, "Data Management Challenges of Data-
Intensive Scientific Workflows," In Cluster Computing and the Grid,
2008. CCGRID'08. 8th IEEE International Symposium on, pp. 687-692,
2008.

[7] Y. Zhao, I. Raicu, X. Fei and S. Lu, "Opportunities and Challenges in
Running Scientific Workflows on the cloud," In Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), 2011
International Conference on, pp. 455-462, 2011.

[8] Z. Er-Dun, Q. Yong-Qiang, X. Xing-Xing and C. Yi, "A Data Placement
Strategy Based on Genetic Algorithm for Scientific Workflows,”
In Computational Intelligence and Security (CIS), 2012 Eighth
International Conference on, pp. 146-149, 2012.

[9] I. Foster, Y. Zhao, I. Raicu and S. Lu, "Cloud Computing and Grid
Computing 360-Degree Compared," In Grid Computing Environments
Workshop, 2008. GCE'08, pp. 1-10, 2008.

[10] G. Juve and E. Deelman, "Scientific workflows and clouds," Journal of
Crossroads, vol. 16, no. 3, pp. 14-18, 2010.

[11] A. K. Kayyoor, A. Deshpande and S. Khuller, "Data Placement and
Replica Selection for Improving Co-location in Distributed
Environments," arXiv preprint arXiv:1302.4168, 2013.

[12] T. Kosar and M. Livny, "A Framework for Reliable and Efficient Data
Placement in Distributed Computing Systems," Journal of Parallel and
Distributed Computing (JPDC), Vol.65, no. 10, pp. 1146-1157, 2005.

[13] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua and F. Fotouhi,
"Service-Oriented Architecture for VIEW: a Visual Scientific Workflow
Management System," Proceedings of the IEEE International
Conference on Services Computing (SCC), pp. 335-342, 2008.

[14] D. Yuan, Y. Yang, X. Liu and J. Chen "A data placement strategy in
scientific cloud workflows," Future Generation Computing Systems 26,
no. 8, pp. 1200-1214, 2010.

[15] D. Yuri, P. Membrey, P. Grosso and C. Laat "Addressing Big Data
Issues in Scientific Data Infrastructure," In Collaboration Technologies
and Systems (CTS), 2013 International Conference on, pp. 48-55, 2013.

114

