
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 523

TPS: A Task Placement Strategy for
Big Data Workflows

Mahdi Ebrahimi, Aravind Mohan, Shiyong Lu, Robert Reynolds
Wayne State University

Detroit, U.S.A.
{mebrahimi, amohan, shiyong, robert.reynolds}@wayne.edu

Abstract— Workflow makespan is the total execution time for
running a workflow in the Cloud. The workflow makespan
significantly depends on how the workflow tasks and datasets are
allocated and placed in a distributed computing environment
such as Clouds. Incorporating data and task allocation strategies
to minimize makespan delivers significant benefits to scientific
users in receiving their results in time. The main goal of a task
placement algorithm is to minimize the total amount of data
movement between virtual machines during the execution of the
workflows. In this paper, we do the following: 1) formalize the
task placement problem in big data workflows; 2) propose a task
placement strategy (TPS) that considers both initial input
datasets and intermediate datasets to calculate the dependency
between workflow tasks; and 3) perform extensive experiments in
the distributed environment to demonstrate that the proposed
strategy provides an effective task distribution and placement
tool..

Keywords- Big Data Workflow, Task Placement, Cloud
Computing, Evolutionary Algorithms, Genetic Algorithms.

1. INTRODUCTION
Complex data-centric computations are generally modeled

as workflows [5, 17]. Among other benefits, representing a
complex application as a workflow simplifies design effort,
enables the reuse of computational modules and allows their
parallel and/or pipelined execution. The concept of workflow
applications has been in use for quite some time in research in
domains such as bioinformatics, physics, astronomy, and
ecology [7, 10]. With the progress in computing, storage,
networking, and sensing technologies and the ease of
performing collaborative scientific research, it is feasible to
create much more complex data-centric workflows that involve
big datasets [3, 15, 19] and run them over distributed and
heterogeneous computing environments such as Clouds [9].
We proposed big data workflow as the next generation of data-
centric workflows to address the above challenges. Big data
workflows involve big data sets and can be executed over the
Cloud [17].

 A data-centric workflow management system (WFMS) is
a platform to support two key functions: 1) the design and
specification of workflows; and 2) the configuration, execution
and monitoring of workflow runs. Traditionally, these systems
have used a directed acyclic graph (DAG) abstraction in order
to model a workflow where each vertex of the graph represents
a workflow task, and the directed edge between two vertices
depicts dataflow between the corresponding tasks. A workflow

task can be either a built-in task, a web service [21, 22] or
comprised of heterogeneous components.

The size of scientific datasets are often in terabytes or even
petabytes, and require dedicated virtual machines just for data
storage purposes [6]. Since scientific applications have become
more and more data intensive, it is even more critical to assign
workflow tasks to the same virtual machines which are already
hosted their required datasets as “moving computation to data
is often cheaper than moving data to computation” [1]. For this,
workflow management needs to utilize an effective data and
task placement strategy in order to maximize data locality, and
minimize data movement between virtual machines in the
Cloud. In big data workflows, it is practically impossible to
store all of the required datasets of tasks in one virtual machine
due to the storage capacity limitation of virtual machines. Thus,
data movement is necessary to execute workflows.

Big data workflows typically model and analyze complex
scientific research experiments as a very large number of tasks
along each with a huge volume of datasets. These large datasets
are physically distributed, and placed on different data sources
by scientist users over the Internet. Big datasets are difficult to
manage by traditional data management tools and strategies. As
a result, big data technology is becoming the main focus in
scientific computing research. [2, 20].

In our previous work, we proposed BDAP as a big data
placement strategy for data-centric workflows [16]. To
continue our research, we propose TPS as a task placement
strategy for big data workflows in this paper. Big data
workflows consist of both data and tasks. BDAP places
workflow data but TPS places workflow tasks into the
available virtual machines in the Cloud. TPS is an evolutionary
algorithm (EA) employing the Genetic Algorithm framework.
[23]. It clusters the most interdependent workflow tasks
ogether, and can possibly assignthem to the same virtual
machine in the Cloud so as to minimize data movement
between virtual machines. We explain our proposed task
placement strategy in section 2 in detail.

In order to illustrate the idea let e us consider an example to
show how a big data workflow can be executed in a cloud
computing environment. Fig. 1.(a) illustrates a sample
workflow with five tasks (tk), five original datasets (dj) and five
generated intermediate datasets (d’k). Fig. 1.(b) shows an
instance of its virtual machines configuration along with a data
placement scheme. Any data placement strategy like BDAP
can be used to assign datasets to the appropriate virtual

524

machines. In this figure, datasets d1 and d3 were placed in
virtual machine 1, VM1. Similarly, d2 and d4 were placed in
VM2 and d5 was placed in VM3. Fig. 1.(c) represents a
complete instance of a virtual machines configuration as well
as data and workflow task placement. Tasks t1 and t2 were
assigned to virtual machine VM1. Tasks t3 and t4 were assigned
to VM2, and t5 was assigned to VM3. In this example, once the
workflow is executed, dataset d2 is required to move from VM2
to VM1 to in order complete the process of task t2. However,
the execution of t3 only requires transferring the output of task
t1, d’1, from VM1 to VM2 since all of its required source
datasets, d2 and d4, are already placed in VM2.

The rest of the paper is organized as follows, first, in Section
2 we define and formalize our system model. In Section 3 we
explain our task placement strategy in detail. Then, in Section
4, the experimental results are shown and discussed. Section 5
presents the related work. Finally, conclusion and future work
are presented in Section 6.

2. FORMALIZING WORKFLOW TASK PLACEMENT
Big data workflows are typically executed in the cloud. To

model the cloud computing environment, we consider a set of
virtual machines in the cloud as the sites to execute the
workflow. Each virtual machine can be provided by a different
Cloud Computing Providers (CCP) such as Amazon EC2,
Google App Engine, and Microsoft Azure. A Cloud
computing environment is modeled as follows:

Definition 2.1 (Cloud Computing Environment C). A cloud
computing environment, C, is a 4-tupl

, where
• is a set of virtual machines in the cloud

().

• is a computation capacity function.
CC gives the maximum available
computation capacity of virtual machine in the
Cloud computing environment C. is the set of
positive real numbers.

• is a storage capacity function.
SC gives the maximum available
storage capacity of virtual machine in the Cloud
computing environment C. It is measured in some pre-
determined unit such as mega-bytes, giga-bytes or tera-
bytes. is the set of positive real numbers.

• is the data transfer rate function.
 gives the data

transfer rate between two virtual machines
. It is measured in some pre-determined

unit such as mega-bytes, giga-bytes per second. is
the set of positive rational numbers.

 Please note that the above three attributes, CC, SC and DTR
are not fixed or static for a virtual machine at all times.
However, these are considered to be established by a priori
negotiation and remain unchanged during the execution of a
given individual workflow.

 For solving complex scientific problems, scientists are

able to create and run their own big data workflows
simultaneously. Each individual workflow contains a set of
tasks that consume various datasets, and may produce
intermediate datasets as well. Those intermediate datasets will
be sent to other tasks as their inputs by following the data flow
logic. A big data workflow is formalized as follows:

Definition 2.2 (Big Data Workflow W). A big data workflow
W can be modeled formally as a 6-tuple that consists of three
sets and two functions as follows:

• is the set of workflow tasks. Each individual task is

denoted by , .

• D is the set of input datasets connected to workflow W.
Each individual dataset is denoted by ,

.

• is the set of output datasets produced by workflow
W. The total number of output datasets is equal to the
total number of workflow tasks as each workflow task,

 generates one output dataset, which can flow to

FIGURE 1. A WORKFLOW WITH DATA AND TASK PLACEMENT

525

the other tasks as the input dataset. Each individual
output dataset is denoted by , .

• is the dataset size function. S
 returns the size of an original or generated

dataset . The size of a dataset is defined in some pre-
determined unit such as mega-bytes, giga-bytes or tera-
bytes. is the set of positive real numbers.

• is the dataset-task function.
TS returns the set of workflow tasks
that consume as their input.

• is the task-dataset function.
DS returns the set of datasets that are
consumed by as its input. The datasets can be either
original or generated datasets.

 To evaluate and compare TPS with other proposed
algorithms, Workflow Communication Cost is defined as
follows:

Definition 2.3 (Workflow Communication Cost, WCC).

If dataset is required to transfer from virtual machine
to then the data movement cost of is defined as

where DTR is the data transfer rate function of the Cloud, and
S function returns data size.

 Given a workflow W and Cloud computing C, the Workflow
Communication Cost (WCC) is equal to the total data
movement cost for executing the complete workflow W in C. It
is defined as follows:

WCC returns the total data movement during workflow
execution of W in the Cloud C. The three main concepts in
clustering are those objects that need to be clustered, the
clusters, and a separation measure to compute the similarity
among the objects in a cluster. In this work, tasks are
considered as the objects and virtual machines in the Cloud are
considered as the clusters. Therefore we need to come up with
a good separation measurement to cluster the most similar
objects (tasks) together in order to meet the objective goal
(minimizing the total data movement).

We consider task interdependency as a vehicle to assess the
separation virtual machines. Two tasks are interdependent and
should be co-allocated in the same virtual machine if they
simultaneously need many of the same datasets as their inputs.
The definition for the interdependency of a pair of tasks is as
follows: Definition
2.4 (Task Interdependency). We consider the size of the
common datasets that a pair of tasks needs as input to be a
measure of the interdependency of the tasks. Task
interdependency value is divided by the total size of the

workflow datasets in order to be normalized in the range of [0
1]. Formally, given two tasks the task
interdependency is calculated by:

where is the sum of the sizes of the datasets in D.

 For instance, if size of datasets is

 then the set of tasks that consume is
 and is and the

task interdependency between is

 In this way, two tasks are interdependent once they have at
least one common dataset as input for both of them. Two tasks
have a higher interdependency when they consume larger sizes
of common datasets. In order to o maximize data locality, it is
necessary to pre-cluster the workflow tasks initially. In the first
step, we calculate the task interdependency of all the workflow
tasks, and generate the task interdependency matrix (TM). In
the interdependency matrix, rows and columns are the
workflow tasks, and the value of a cell in the interdependency
matrix is the task interdependency between two tasks. For
instance, task interdependency matrix of workflow in Example
1 is as follows:

 TPS partitions and distributes the original datasets onto all
appropriate virtual machines in the Cloud. Then, the related
tasks will be assigned to the corresponding virtual machine so
that their required datasets are stored there. In this way, the
total amount of data movement between virtual machines is
decreased, and the overall workflow execution time will be
reduced. This task placement scheme is used to create a
mapping of each workflow task onto corresponding virtual
machine. A task placement scheme is defined formally as
follows:

Definition 2.5 (Task Placement Scheme Suppose there
are I virtual machines and K tasks, a task placement scheme is
represented by a K-element vector such that indicates
the virtual machine to which is placed. For example if the
task placement scheme is it means tasks

and are placed in virtual machine (
), tasks and in virtual machine (
), and the task in virtual machine ().

We consider all the workflow tasks to be flexible and can be
executed by any of the virtual machines. To define a good

526

metric to compare the separation between virtual machines, the
task interdependency within and between virtual machines are
defined as follows:

Definition 2.6 (Within-VirtualMachine Task
Interdependency).

where is the task interdependency between task

 , I is the maximum number of virtual machines in
the Cloud.

Definition 2.7 (Between-VirtualMachine Task
Interdependency).

 To achieve the task placement goal, TPS uses heuristic
information for its search direction of finding the best task
placement scheme. Heuristic information should consider both
inter and intra virtual machine interdependency. The heuristic
is defined in TPS as follows:

Definition 2.8 (Task Interdependency Greedy TG). The TG
heuristic biases TPS to select the task placement scheme with
higher task interdependency. It is defined as:

 In this formula, the numerator measures the Within-
VirtualMachine Task Interdependency, and the denominator
measures the Between-VirtualMachine Task Interdependency.
The bias 1 is set to avoid divided-by-zero in the case that the
task interdependency between virtual machines is zero. A good
task placement scheme has a higher TG. Therefore the output
of TPS is a task placement scheme with the highest TG.
 In this paper we do not consider task replication. It means once
a task is mapped into a specific virtual machine, it cannot be
placed placed into another virtual machine. .

Definition 2.9 (Task Placement Solution). The task
placement solution for big data workflow, W, to execute in a
Cloud computing environment, C, is to select a task placement
scheme that minimizes the workflow communication
cost (WCC) under the virtual machine storage capacity and
non-replication constraint. In the next section, we explain our
task placement strategy, TPS, in detail.

3. PROPOSED TASK PLACEMENT ALGORITHM
The main steps of TPS are depicted in Fig. 2. In the first

phase, TPS applies a metaheuristic optimization Genetic

Algorithm to place the workflow tasks. The main goal is to
minimize workflow communication cost by minimizing the
data movement between virtual machines in the cloud while
running a workflow. TPS starts with calculating the task
interdependency matrix. Then, it generates a set of task
placement schemes randomly, and calculates their heuristic
values. In the following, for each task placement scheme, TPS
applies three main genetic operators: Selection, Crossover, and
Mutation. They are applied sequentially to generate possibly
better schemes with higher heuristic values. At the end of the
algorithm, the best task placement scheme is recorded in
and will be returned as the output of TPS.

 In order to apply the task placement strategy and to analyze
the task interdependency, the entire workflow has to be
designed. It means that all tasks and datasets of the big data
workflow have to be specified. The TPS algorithm is outlined
in Algorithm 1.

 In the first step, TPS generates popsize number of feasible
and valid task placement schemes randomly as well as
calculating the heuristic value of each individual scheme
(lines1-5). In the next step, TPS applies the three main
operators in order to generate new schemes with a hopefully
higher performance function values until it reaches the max
number of iterations. First, it selects ne = popsize
elitism_rate number of schemes with the highest heuristic

value and saves them in the (lines 9-10). These high-
value schemes will transfer directly to the next generation of
task schemes to guarantee the convergence of TPS. We apply
the fitness proportional selection, roulette wheel selection, for
this step. The idea behind the roulette wheel selection
technique is that each scheme is given a chance to select in
proportion to its performance function value. Then, it applies
the crossover function and, computes the heuristic value of the
new generated schemes (lines 11-16). In the last step, TPS
applies the mutation operator for a randomly selected scheme
along with computing its heuristic value (lines 17-25). The
idea behind the roulette wheel selection technique is that each
scheme is given a chance to be selected as a parent in
proportion to its performance value. These three operators
apply to the task schemes until it reaches user-defined TG
threshold which is minimum acceptable TG defined by the
user at the beginning of the algorithm. In the last step, the best
task placement scheme is returned as the output of TPS.

In the next section, we present and discuss the experiments
results and compare TPS with k-means clustering and Random
approaches. The k-means clustering is based on Yuan’s work
[14] which is the one of the most competitive algorithms in
this field. It was originally proposed for data clustering and we
revised it to use for workflow task clustering. It applies a
matrix based k-means clustering strategy to precluster tasks
into k virtual machines by using data interdependency and
BEA (Bond Energy Algorithm).

4. EXPERIMENT AND CASE STUDY
A. Case Study

 To evaluate performance of our proposed task placement
approach (TPS) we compare it with k-means clustering and

527

FIGURE 2. FLOWCHART OF TPS.

Random strategy. We developed a real Cloud-based workflow
for OpenXC dataset to compare any number of car drivers
with each other.

 In DATAVIEW [17], we developed an OpenXC
workflow, that consists of six individual workflow tasks (Fig.
3). For each individual car driver we calculated her driving
brehavior. This workflow has two main stages, in the first
stage it computes how unsafe the driver is based on the
braking ability and in the second stage it evaluates the vehicle
speed of the driver in order to to compute the risk level of the
driver.
Description of the workflow tasks are as follows:
Task 1 – getDriverInfo: This workflow task gets the OpenXC
raw data set as well as car driver id, and returns the signal
details for that particular car driver.
Task 2 - BrakeSpeedDistribution: This step is used to compute
how unsafe the driver is, based on her braking ability. For
every pair of brake pressed (true and false value), the
workflow will output the total time driven without pressing
brake and the top 5 vehicle speed.
Task 3 – getAddByLatLon: In this step, the address where the
signal is captured is calculated by using the Google API and
Latitude and Longitude signal.
Task 4 – chkHighway: This task is used to compute decide if
the car is on highway or not by using a google places API. It is
based on the address where the signal is captured.
Task 5 – getSpeedLimit: This task is used to get the speed
limit posted on the road. This workflow will automatically set
the speed to 65 if it is highway. If not highway it will set the
speed limit to 45.
Task 6 –speedCheck: This task is to compare the top 5 actual
vehicle speed with the speed limit posted on the road in order
to compute the total number of times the driver exceeded the
speed limit.

Task 7 –compareDriver: This task is used to compare different
drivers based on their speed distribution and braking ability.

Algorithm 1. Task Placement Strategy (TPS)
Input:
 T: set of workflow tasks,
 TP: task interdependency matrix,
 popsize: size of population ,
 er: rate of elitism,
 cr: rate of crossover,
 mr: rate of mutation,
 : TG threshold,
Output:
 The best task placement scheme,

1. Begin

2. for i = 1 to popsize do

3. Generate a task placement scheme randomly;

4. ;

5. end for

6. Do

7. oldTG = The highest TG in Pop;

8. ne = popsize er; // number of elitism

9. The best ne task placement schemes in Pop;

10. nc = popsize * cr; // number of crossover

11. for i =1 to nc do

12. randomly select two task placement scheme and
from Pop;

13. generate C and D by one-point crossover for tasks of
 and ;

14. ;

15. ;

16. end for

17. nm= popsize mr;// number of mutation

18. for i =1 to nm do

19. select a task placement scheme from ;

20. mutate randomly a virtual machine position numbe
in ;

21. ;

22. end for

23. Pop and ;

24. newTG = The highest TG in Pop;

25. while (|newTG - oldTG| / oldTG)

26. return the best task placement scheme ;

27. end

 Fig. 3 shows the OpenXC workflow for comparing driving
behavior for two car drivers. There are 6 individual tasks and
13 datasets (both original and intermediate datasets) for each
car driver. To create a workflow with the large number of tasks
and data products, we repeat the above workflow with a
different number of car drivers under the assumption that each

Yes

No

Calculate Task
Interdependency
Matrix (TM)

Generate a set of
task placement
scheme randomly
(P)

Compute the
heuristic value of
each scheme (TG)

Termination
Conditions?

Return the best task placement scheme

Apply Selection (SE),
Crossover (Co) and Mutation
(MU) to generate a new
population of task placement
schemes

528

task can be executed on different virtual machines. For our
experiments, we consider 2, 10, 20, 50 and 100 car drivers with
a total number of tasks, [13, 61, 121, 301, 601]. In our
experimental setting, we used virtual machines in the range of
5-25 with a range of 5GB-20GB of storage capacity (as shown
in Table 1). The input OpenXC datasets are synthetic datasets
built from the data recorded by real car drivers [18]. We
demonstrate the performance of our proposed task placement
algorithm by comparing it with k-means clustering, and a
randomly generated task placement approaches with the
average of the workflow communication cost defined in section
3. Based on our experiments, we observe that our results shown
in Table 2 outperform the other task placement schemes.

B. Implementation

In our DATAVIEW system, we integrated the big data
workflow engine subsystem with FutureSystems academic
cloud provider in order to automatically provision virtual
machines to execute big data workflows in the Cloud. We
implemented bash scripts to automatically provision virtual
machines by first creating a new image and configure both the
hardware and software settings.
 Workflow execution is transparent to our data scientists.
They can just create and run any arbitrary workflow and the
system deploys a set of virtual machines, datasets and moves
workflow tasks to the corresponding virtual machine. At
design time, our TPS algorithm parses the specification of the

workflow and identifies an optimal mapping of the workflow

tasks to the corresponding virtual machines. At run time, the
DATAVIEW system moves the workflow task to the
corresponding virtual machines based on the mapping
generated by TPS. Finally the workflow is executed in a
distributed manner as a means to improve the performance of
the TPS. Please note that workflow scheduling is out of the
scope of this study. The order of workflow tasks execution
(sequential, pipeline or parallel) is not specified by TPS. TPS
can be invoked by any workflow scheduler to obtain an
optimal placement and therefore minimize workflow
makespan. For our experiments in three approaches, we ran
workflow tasks sequentially from entry task till the exit/final
task.
Table 3 shows the description of running the OpenXC
workflow of Fig. 3 and Table 4 shows some of the result of
applying TPS for the execution of workflow in Example 1.

C. Results
 Fig. 4 shows the Workflow Communication Cost (WCC), in

terms of hour by varying the number of tasks and fixing the
number of virtual machines. Our experiments show that WCC
cost increases with a large number of tasks and data products in
both algorithms. However, it can be seen clearly that our
strategy reduces WCC compared to the k-means clustering and
Random algorithms. In the next step, we calculate WCC by
varying the number of virtual machines and fixing the number
of tasks (Fig. 5). Although WCC is increased by increasing the
number of virtual machines, the increasing rate of our strategy
is slower than the k-means clustering and Random strategies.
In addition, it shows at some point, provisioning new Cloud
resources like virtual machines does not affect the workflow
performance as we may have many idle virtual machines.

5. RELATED WORK
 Both data and workflow task placement becomes a

fundamental research task in the cloud due to the rapid
increase of accessible large datasets over the Internet and the

TABLE 2. DEFAULT SETTING FOR TPS ALGORITHM.

Overall dataset and virtual machine
Maximum population size

Initial population
Maximum generation
Crossover probability
Mutation probability

TG threshold

100
Randomly generation

100
0.8-0.9
0.3-0.5
0.01-0.1

TABLE 1. DESCRIPTION OF TASK AND VIRTUAL MACHINE OF THE
EXPERIMENT.

Overall task and virtual machine
of tasks

of virtual machines
virtual machines computing capacity

data transfer rate between virtal machines

[13, 61, 121, 301, 601]
 [5, 10, 15, 20, 25]

5GB – 20GB
5MB per second

TABLE 4. SOME RESULT OF APPLYING TPS FOR THE EXECUTION OF
WORKFLOW IN EXAMPLE 1.

The best task placement scheme in the
First population <t#, vm#> Last (10th) population <t#, vm#>

TABLE 3. OPENXC WORKFLOW OF ONE CAR DERIVER RUNNING IN
DATAVIEW

Task Name Execution
Time (hrs)

Input Data
Size(GB)

Output Data
Size(GB)

VM#

vm1

vm2

vm1

vm3

vm1

vm2

FIGURE 3. OPENXC WORKFLOW FOR COMPARING TWO CAR DRIVERS.

529

emerging field of big data. Previous research studies for
distributed computing environment have been mainly focused
on the performance modeling and optimization of job
scheduling and task placement. Kosar et al., [12] proposed a
framework for distributed computing systems, which
considered both the data placement and computation modules
as two separate subsystems. In this framework, data placement
module was proposed as an independent job that can be
scheduled and managed like the computation jobs. Kayyoor et

al., [11] considered data replication along with data placement
for the distributed environments. Instead of minimizing of
query latencies, their goal was to minimize the average
number of dedicated computation nodes. For this, they
grouped the most similar data together based on their
occurrences in common query accesses.

By applying task placement and data replication services,
Chervenak et al., [13] evaluated and displayed the benefits of

0 100 200 300 400 500 600
0

20

40

60

80

Number of workflow tasks

W
C

C
 (
h
o
u
rs

)
a-5 Virtual Machines

0 100 200 300 400 500 600
0

50

100

150

Number of workflow tasks

W
C

C
 (
h
o
u
rs

)

b-10 Virtual Machines

0 100 200 300 400 500 600
0

50

100

150

200

Number of workflow tasks

W
C

C
 (
h
o
u
rs

)

c-15 Virtual Machines

0 100 200 300 400 500 600
0

100

200

300

Number of workflow tasks

W
C

C
 (
h
o
u
rs

)

d-20 Virtual Machines

0 100 200 300 400 500 600
0

100

200

300

400

Number of workflow tasks

W
C

C
 (
h
o
u
rs

)

e-25 Virtual Machines

TPS
K-means clustring
Random

5 10 15 20 25
0

20

40

60

Number of virtual machines

W
C

C
(h

o
u
rs

)

a-13 Tasks

5 10 15 20 25
0

20

40

60

80

100

Number of virtual machines

W
C

C
(h

o
u
rs

)

b-61 Tasks

5 10 15 20 25
0

50

100

150

200

Number of virtual machines

W
C

C
(h

o
u
rs

)

c-121 Tasks

5 10 15 20 25
0

50

100

150

200

250

Number of virtual machines

W
C

C
(h

o
u
rs

)

d-301 Tasks

5 10 15 20 25
0

100

200

300

400

Number of virtual machines

W
C

C
(h

o
u
rs

)

e-601 Tasks

TPS
K-means clustring
Random

FIGURE 4. WORKFLOW COMMUNICATION COST (HOURS) BY VARYING THE NUMBER OF WORKFLOW TASKS.

FIGURE 5. WORKFLOW COMMUNICATION COST (HOURS) BY VARYING THE NUMBER OF VIRTUAL MACHINES.

530

pre-staging data compare to the data stage processing of the
Pegasus.

In Catalyurek et al., [4] workflows were modeled by the
hypergraph concept and a hypergraph partitioning technique,
k-way partitioning, is applied to minimize the cutsize. In that
way, they clustered the workflow tasks as well as their
required data in the same execution site. Yuan et al., [14]
applied a greedy binary clustering technique to pre-cluster
datasets at design-time based on the workflow task
dependencies. Er-Dun et al., [8] proposed a Genetic Algorithm
for data placement that considered a load balancing factor.
Their approach reduced data movement, but they did not
consider task interdependency factor and cluster the data based
on the data similarity.

In our previous work, we proposed big data placements
strategy (BDAP) in order to place the most interdependent
datasets in the same virtual machine in the Cloud by
considering their common workflow tasks. BDAP minimized
the total amount of data movement between virtual machines
during the execution of the workflows. TPS is about task
placement and can be applied independently or in conjecture
with BDAP to place both data and workflow takes together.

6. CONCLUSIONS AND FUTURE WORK
 We proposed TPS, a task placement strategy for big data
workflows. TPS minimized the total amount of data movement
between virtual machines during the execution of the
workflows. Our extensive experiments and comparisons
indicated that TPS outperformed the k-means clustering and
Random algorithms so as to minimize data movement.
 Big data workflows consume and produce huge datasets.
Applying task/data replication can reduce data movement as
well. So in future work, we plan to improve TPS by applying
task/data replication techniques. In addition, we considered
task placement for executing of an individual workflow.
However, in real world, multiple workflows can be executed
concurrently. Therefore, we plan to extend the TPS strategy in
order to achieve task placement for the execution of multiple
workflows simultaneously. For the other future work, we will
enhance the performance of both BDAP and TPS strategies by
using Cultural Algorithm (CA).

ACKNOWLEDGMENT
This work is supported by National Science Foundation,

under grants NSF ACI-1443069. This material is based upon
work supported in part by the National Science Foundation
under Grant No. 0910812.

REFERENCES
[1] D. Agrawal, A. E. Abbadi, S. Antony, and S. Das, "Data management

challenges in cloud computing infrastructures." In Databases in
Networked Information Systems, pp. 1-10, 2010.

[2] J. Wang, D. Crawl, I. Altintas, W. Li, "Big Data Applications Using
Workflows for Data Parallel Computing," Journal of Computing in
Science and Engineering, vol. 16, no. 4, pp. 11-21, 2014.

[3] E. Bertino, "Big Data-Opportunities and Challenges." In IEEE 37th
Annual Computer Software and Applications Conference. 2013.

[4] U. V. Catalyurek, K. Kaya and B. Ucar, "Integrated Data Placement and
Task Assignment for Scientific Workflows in clouds," In Proceedings of
the fourth international workshop on Data-intensive distributed
computing, pp. 45-54, 2011.

[5] J.D. Montes, M. Zou, R. Singh, S. Tao, and M. Parashar, "Data-driven
workflows in multi-cloud marketplaces." In Cloud Computing, 2014
IEEE 7th International Conference on, pp. 68-175. IEEE, 2014.

[6] E. Deelman and A. Chervenak, "Data Management Challenges of Data-
Intensive Scientific Workflows," In Cluster Computing and the Grid.
CCGRID'08. 8th IEEE International Symposium on, pp. 687-692, 2008.

[7] Y. Zhao, I. Raicu, X. Fei and S. Lu, "Opportunities and Challenges in
Running Scientific Workflows on the cloud," In Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC),
International Conference on, pp. 455-462, 2011.

[8] Z. Er-Dun, Q. Yong-Qiang, X. Xing-Xing and C. Yi, "A Data Placement
Strategy Based on Genetic Algorithm for Scientific Workflows,”
In Computational Intelligence and Security (CIS), Eighth International
Conference on, pp. 146-149, 2012.

[9] I. Foster, Y. Zhao, I. Raicu and S. Lu, "Cloud Computing and Grid
Computing 360-Degree Compared," In Grid Computing Environments
Workshop, 2008. GCE'08, pp. 1-10, 2008.

[10] G. Juve and E. Deelman, "Scientific workflows and clouds," Journal of
Crossroads, vol. 16, no. 3, pp. 14-18, 2010.

[11] A. K. Kayyoor, A. Deshpande and S. Khuller, "Data Placement and
Replica Selection for Improving Co-location in Distributed
Environments," arXiv preprint arXiv:1302.4168, 2013.

[12] T. Kosar and M. Livny, "A Framework for Reliable and Efficient Data
Placement in Distributed Computing Systems," Journal of Parallel and
Distributed Computing (JPDC), Vol.65, no. 10, pp. 1146-1157, 2005.

[13] A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S. Bharathi, G.
Mehta, and K. Vahi, "Data Placement for Scientific Applications in
Distributed Environments," In Proceedings of the 8th IEEE/ACM
International Conference on Grid Computing, pp. 267-274, 2007.

[14] D. Yuan, Y. Yang, X. Liu and J. Chen, "A data placement strategy in
scientific cloud workflows," Future Generation Computing Systems 26,
no. 8, pp. 1200-1214, 2010.

[15] D. Yuri, P. Membrey, P. Grosso and C. Laat, "Addressing Big Data
Issues in Scientific Data Infrastructure," In Collaboration Technologies
and Systems (CTS), 2013 International Conference on, pp. 48-55, 2013.

[16] Mahdi Ebrahimi, Aravind Mohan, Andrey Kashlev, and Shiyong Lu,
“BDAP: A Big Data Placement Strategy for Cloud-Based Scientific
Workflows”, in Proceedings of the First IEEE International Conference
on Big Data Computing Services and Applications, pp.105-114, 2015.

[17] Andrey Kashlev and Shiyong Lu, “A System Architecture for Running
Big Data Workflows in the Cloud”, in Proceedings of the IEEE
International Conference on Services Computing (SCC), pp.51-58, 2014.

[18] The OpenXC Platform, http://openxcplatform.com.
[19] H. Wenwey, Y. C. Huang, S. C. Hsu, and C. Pu. "Real-time

collaborative planning with big data: Technical challenges and in-place
computing." In Collaborative Computing: Networking, Applications and
Worksharing (Collaboratecom), 9th International Conference
Conference on, pp. 96-104, 2013.

[20] M. B. Blake, D. J. Cummings, A. Bansal, and S. K. Bansal, "Workflow
composition of service level agreements for web services." Decision
support systems 53, no. 1, pp. 234-244, 2012.

[21] Z. Shen, and J. Su, "On completeness of web service compositions." In
Web Services. IEEE International Conference on, pp. 800-807, 2007.

[22] M. Huhns, and M. P. Singh., "Service-oriented computing: Key concepts
and principles." Internet Computing, IEEE 9, no. 1, pp. 75-81, 2005.

[23] C. K. Chang, M. J. Christensen, and T. Zhang, "Genetic algorithms for
project management." Annals of Software Engineering 11, no. 1, pp.
107-139,2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

