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Abstract— Workflow makespan is the total execution time for 
running a workflow in the Cloud. The workflow makespan 
significantly depends on how the workflow tasks and datasets are 
allocated and placed in a distributed computing environment 
such as Clouds. Incorporating data and task allocation strategies 
to minimize makespan delivers significant benefits to scientific 
users in receiving their results in time. The main goal of a task 
placement algorithm is to minimize the total amount of data 
movement between virtual machines during the execution of the 
workflows. In this paper, we do the following: 1) formalize the 
task placement problem in big data workflows; 2) propose a task 
placement strategy (TPS) that considers both initial input 
datasets and intermediate datasets to calculate the dependency 
between workflow tasks; and 3) perform extensive experiments in 
the distributed environment to demonstrate that the proposed 
strategy provides an effective task distribution and placement 
tool.. 

Keywords- Big Data Workflow, Task Placement, Cloud 
Computing, Evolutionary Algorithms, Genetic Algorithms. 

1.  INTRODUCTION 
Complex data-centric computations are generally modeled 

as workflows [5, 17]. Among other benefits, representing a 
complex application as a workflow simplifies design effort, 
enables the reuse of computational modules and allows their 
parallel and/or pipelined execution. The concept of workflow 
applications has been in use for quite some time in research in 
domains such as bioinformatics, physics, astronomy, and 
ecology [7, 10]. With the progress in computing, storage, 
networking, and sensing technologies and the ease of 
performing collaborative scientific research, it is feasible to 
create much more complex data-centric workflows that involve 
big datasets [3, 15, 19] and run them over distributed and 
heterogeneous computing environments such as Clouds [9]. 
We proposed big data workflow as the next generation of data-
centric workflows to address the above challenges. Big data 
workflows involve big data sets and can be executed over the 
Cloud [17].  

   A data-centric workflow management system (WFMS) is 
a platform to support two key functions: 1) the design and 
specification of workflows; and 2) the configuration, execution 
and monitoring of workflow runs. Traditionally, these systems 
have used a directed acyclic graph (DAG) abstraction in order 
to model a workflow where each vertex of the graph represents 
a workflow task, and the directed edge between two vertices 
depicts dataflow between the corresponding tasks. A workflow 

task can be either a built-in task, a web service [21, 22] or 
comprised of heterogeneous components.  

The size of scientific datasets are often in terabytes or even 
petabytes,  and require  dedicated virtual machines just for data 
storage purposes [6]. Since scientific applications have become 
more and more data intensive, it is even more critical to assign 
workflow tasks to the same virtual machines which are already 
hosted their required datasets as “moving computation to data 
is often cheaper than moving data to computation” [1]. For this, 
workflow management needs to utilize an effective data and 
task placement strategy in order to maximize data locality, and 
minimize data movement between virtual machines in the 
Cloud. In big data workflows, it is practically impossible to 
store all of the required datasets of tasks in one virtual machine 
due to the storage capacity limitation of virtual machines. Thus, 
data movement is necessary to execute workflows.  

Big data workflows typically model and analyze complex 
scientific research experiments as a very large number of tasks 
along each with a huge volume of datasets. These large datasets 
are physically distributed, and placed on different data sources 
by scientist users over the Internet. Big datasets are difficult to 
manage by traditional data management tools and strategies. As 
a result, big data technology is becoming the main focus in 
scientific computing research. [2, 20].  

In our previous work, we proposed BDAP as a big data 
placement strategy for data-centric workflows [16]. To 
continue our research, we propose TPS as a task placement 
strategy for big data workflows in this paper. Big data 
workflows consist of both data and tasks. BDAP places 
workflow data but TPS places workflow tasks into the 
available virtual machines in the Cloud. TPS is an evolutionary 
algorithm (EA) employing the Genetic Algorithm framework. 
[23]. It clusters the most interdependent workflow tasks 
ogether, and can possibly assignthem to the same virtual 
machine in the Cloud so as to minimize data movement 
between  virtual machines. We explain our proposed task 
placement strategy in section 2 in detail. 

In order to illustrate the idea let e us consider an example to 
show how a big data workflow can be executed in a cloud 
computing environment. Fig. 1.(a) illustrates a sample 
workflow with five tasks (tk), five original datasets (dj) and five 
generated intermediate datasets (d’k). Fig. 1.(b) shows an 
instance of its virtual machines configuration along with a data 
placement scheme. Any data placement strategy like BDAP 
can be used to assign datasets to the appropriate virtual 
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machines. In this figure, datasets d1 and d3 were placed in 
virtual machine 1, VM1. Similarly, d2 and d4 were placed in 
VM2 and d5 was placed in VM3.  Fig. 1.(c) represents a 
complete instance of a virtual machines configuration as well 
as data and workflow task placement. Tasks t1 and t2 were 
assigned to virtual machine VM1. Tasks t3 and t4 were assigned 
to VM2, and t5 was assigned to VM3. In this example, once the 
workflow is executed, dataset d2 is required to move from VM2 
to VM1 to in order complete the process of task t2. However, 
the execution of t3 only requires transferring the output of task 
t1, d’1, from VM1 to VM2 since all of its required source 
datasets, d2 and d4, are already placed in VM2.  

The rest of the paper is organized as follows, first, in Section 
2 we define and formalize our system model. In Section 3 we 
explain our task placement strategy in detail. Then, in Section 
4, the experimental results are shown and discussed. Section 5 
presents the related work. Finally, conclusion and future work 
are presented in Section 6. 

2. FORMALIZING WORKFLOW TASK PLACEMENT 
Big data workflows are typically executed in the cloud. To 

model the cloud computing environment, we consider a set of 
virtual machines in the cloud as the sites to execute the 
workflow. Each virtual machine can be provided by a different 
Cloud Computing Providers (CCP) such as Amazon EC2, 
Google App Engine, and Microsoft Azure. A Cloud 
computing environment is modeled as follows: 

Definition 2.1 (Cloud Computing Environment C). A cloud 
computing environment, C, is a 4-tupl

, where 
• is a set of virtual machines in the cloud  

( ). 

•  is a computation capacity function. 
CC gives the maximum available 
computation capacity of virtual machine  in the 
Cloud computing environment C.  is the set of 
positive real numbers.   

•  is a storage capacity function. 
SC gives the maximum available 
storage capacity of virtual machine  in the Cloud 
computing environment C. It is measured in some pre-
determined unit such as mega-bytes, giga-bytes or tera-
bytes.  is the set of positive real numbers.  

•  is the data transfer rate function. 
 gives the data 

transfer rate between two virtual machines 
. It is measured in some pre-determined 

unit such as mega-bytes, giga-bytes per second.  is 
the set of positive rational numbers.  

   Please note that the above three attributes, CC, SC and DTR 
are not fixed or static for a virtual machine at all times. 
However, these are considered to be established by a priori 
negotiation and remain unchanged during the execution of a 
given individual workflow.  

    For solving complex scientific problems, scientists are 

able to create and run their own big data workflows 
simultaneously. Each individual workflow contains a set of 
tasks that consume various datasets, and may produce 
intermediate datasets as well. Those intermediate datasets will 
be sent to other tasks as their inputs by following the data flow 
logic. A big data workflow is formalized as follows: 

Definition 2.2 (Big Data Workflow W). A big data workflow 
W can be modeled formally as a 6-tuple that consists of three 
sets and two functions as follows: 

 
•  is the set of workflow tasks. Each individual task is 

denoted by , . 

• D is the set of input datasets connected to workflow W. 
Each individual dataset is denoted by , 

.  

•  is the set of output datasets produced by workflow 
W. The total number of output datasets is equal to the 
total number of workflow tasks as each workflow task, 

 generates one output dataset,  which can flow to 

FIGURE 1. A WORKFLOW WITH DATA AND TASK PLACEMENT 
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the other tasks as the input dataset. Each individual 
output dataset is denoted by , .  

•  is the dataset size function. S
 returns the size of an original or generated 

dataset . The size of a dataset is defined in some pre-
determined unit such as mega-bytes, giga-bytes or tera-
bytes.  is the set of positive real numbers. 

•  is the dataset-task function. 
TS  returns the set of workflow tasks 
that consume  as their input.   

•  is the task-dataset function. 
DS  returns the set of datasets that are 
consumed by  as its input. The datasets can be either 
original or generated datasets.   

    To evaluate and compare TPS with other proposed 
algorithms, Workflow Communication Cost is defined as 
follows: 

Definition 2.3 (Workflow Communication Cost, WCC). 

If dataset is required to transfer from virtual machine  
to then the data movement cost of  is defined as  

 

where DTR is the data transfer rate function of the Cloud, and 
S function returns data size.    

   Given a workflow W and Cloud computing C, the Workflow 
Communication Cost (WCC) is equal to the total data 
movement cost for executing the complete workflow W in C. It 
is defined as follows: 

 

WCC returns the total data movement during workflow 
execution of W in the Cloud C. The three main concepts in 
clustering are those objects that need to be clustered, the 
clusters, and a separation measure to compute the similarity 
among the objects in a cluster. In this work, tasks are 
considered as the objects and virtual machines in the Cloud are 
considered as the clusters. Therefore we need to come up with 
a good separation measurement to cluster the most similar 
objects (tasks) together in order to meet the objective goal 
(minimizing the total data movement). 

We consider task interdependency as a vehicle to assess the 
separation virtual machines. Two tasks are interdependent and 
should be co-allocated in the same virtual machine if they 
simultaneously need many of the same datasets as their inputs. 
The definition for the interdependency of a pair of tasks is as 
follows:                          Definition 
2.4 (Task Interdependency). We consider the size of the 
common datasets that a pair of tasks needs as input to be a 
measure of the interdependency of the tasks. Task 
interdependency value is divided by the total size of the 

workflow datasets in order to be normalized in the range of [0 
1]. Formally, given two tasks  the task 
interdependency is calculated by: 

 

 

 
where  is the sum of the sizes of the datasets in D. 

   For instance, if size of datasets is 

 then the set of tasks that consume  is  
 and  is and the 

task interdependency between is 

 

 

 
   In this way, two tasks are interdependent once they have at 
least one common dataset as input for both of them. Two tasks 
have a higher interdependency when they consume larger sizes 
of common datasets. In order to o maximize data locality, it is 
necessary to pre-cluster the workflow tasks initially. In the first 
step, we calculate the task interdependency of all the workflow 
tasks, and generate the task interdependency matrix (TM). In 
the interdependency matrix, rows and columns are the 
workflow tasks, and the value of a cell in the interdependency 
matrix is the task interdependency between two tasks. For 
instance, task interdependency matrix of workflow in Example 
1 is as follows:  

 

 
   TPS partitions and distributes the original datasets onto all 
appropriate virtual machines in the Cloud. Then, the related 
tasks will be assigned to the corresponding virtual machine so 
that their required datasets are stored there. In this way, the 
total amount of data movement between virtual machines is 
decreased, and the overall workflow execution time will be 
reduced. This task placement scheme is used to create a 
mapping of each workflow task onto corresponding virtual 
machine. A task placement scheme is defined formally as 
follows: 
 
Definition 2.5 (Task Placement Scheme Suppose there 
are I virtual machines and K tasks, a task placement scheme is 
represented by a K-element vector  such that indicates 
the virtual machine to which  is placed. For example if the 
task placement scheme is  it means tasks 

and  are placed in virtual machine  (
), tasks and in virtual machine (
), and the task  in virtual machine ( ).  

We consider all the workflow tasks to be flexible and can be 
executed by any of the virtual machines. To define a good 
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metric to compare the separation between virtual machines, the 
task interdependency within and between virtual machines are 
defined as follows: 
 
Definition 2.6 (Within-VirtualMachine Task 
Interdependency ). 
 

 

 
where is the task interdependency between task 

 , I is the maximum number of virtual machines in 
the Cloud.  
 
Definition 2.7 (Between-VirtualMachine Task 
Interdependency ). 
 

 

 
   To achieve the task placement goal, TPS uses heuristic 
information for its search direction of finding the best task 
placement scheme. Heuristic information should consider both 
inter and intra virtual machine interdependency. The heuristic 
is defined in TPS as follows: 
 
Definition 2.8 (Task Interdependency Greedy TG). The TG 
heuristic biases TPS to select the task placement scheme with 
higher task interdependency. It is defined as: 
 

 

 
     In this formula, the numerator measures the Within-
VirtualMachine Task Interdependency, and the denominator 
measures the Between-VirtualMachine Task Interdependency. 
The bias 1 is set to avoid divided-by-zero in the case that the 
task interdependency between virtual machines is zero. A good 
task placement scheme has a higher TG. Therefore the output 
of TPS is a task placement scheme with the highest TG. 
 In this paper we do not consider task replication. It means once 
a task is mapped into a specific virtual machine, it cannot be 
placed placed  into another virtual machine.  . 
 
Definition 2.9 (Task Placement Solution). The task 
placement solution for big data workflow, W, to execute in a 
Cloud computing environment, C, is to select a task placement 
scheme  that minimizes the workflow communication 
cost (WCC) under the virtual machine storage capacity and 
non-replication constraint. In the next section, we explain our 
task placement strategy, TPS, in detail. 

3. PROPOSED TASK PLACEMENT ALGORITHM 
The main steps of TPS are depicted in Fig. 2. In the first 

phase, TPS applies a metaheuristic optimization Genetic 

Algorithm to place the workflow tasks. The main goal is to 
minimize workflow communication cost by minimizing the 
data movement between virtual machines in the cloud while 
running a workflow. TPS starts with calculating the task 
interdependency matrix. Then, it generates a set of task 
placement schemes randomly, and calculates their heuristic 
values. In the following, for each task placement scheme, TPS 
applies three main genetic operators: Selection, Crossover, and 
Mutation. They are applied sequentially to generate possibly 
better schemes with higher heuristic values. At the end of the 
algorithm, the best task placement scheme is recorded in  
and will be returned as the output of TPS.  

   In order to apply the task placement strategy and to analyze 
the task interdependency, the entire workflow has to be 
designed. It means that all tasks and datasets of the big data 
workflow have to be specified. The TPS algorithm is outlined 
in Algorithm 1. 
 
     In the first step, TPS generates popsize number of feasible 
and valid task placement schemes randomly as well as 
calculating the heuristic value of each individual scheme 
(lines1-5).  In the next step, TPS applies the three main 
operators in order to generate new schemes with a hopefully 
higher performance function values until it reaches the max 
number of iterations. First, it selects ne = popsize
elitism_rate number of schemes with the highest heuristic 

value and saves them in the  (lines 9-10). These high-
value schemes will transfer directly to the next generation of 
task schemes to guarantee the convergence of TPS. We apply 
the fitness proportional selection, roulette wheel selection, for 
this step. The idea behind the roulette wheel selection 
technique is that each scheme is given a chance to select in 
proportion to its performance function value. Then, it applies 
the crossover function and, computes the heuristic value of the 
new generated schemes (lines 11-16). In the last step, TPS 
applies the mutation operator for a randomly selected scheme 
along with computing its heuristic value (lines 17-25). The 
idea behind the roulette wheel selection technique is that each 
scheme is given a chance to be selected as a parent in 
proportion to its performance value. These three operators 
apply to the task schemes until it reaches user-defined TG 
threshold which is minimum acceptable TG defined by the 
user at the beginning of the algorithm. In the last step, the best 
task placement scheme is returned as the output of TPS.  

In the next section, we present and discuss the experiments 
results and compare TPS with k-means clustering and Random 
approaches. The k-means clustering is based on Yuan’s work 
[14] which is the one of the most competitive algorithms in 
this field. It was originally proposed for data clustering and we 
revised it to use for workflow task clustering. It applies a 
matrix based k-means clustering strategy to precluster tasks 
into k virtual machines by using data interdependency and 
BEA (Bond Energy Algorithm). 

4. EXPERIMENT AND CASE STUDY 
A. Case Study  

    To evaluate performance of our proposed task placement 
approach (TPS) we compare it with k-means clustering and  
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FIGURE 2. FLOWCHART OF TPS. 
 
 
 
Random strategy. We developed a real Cloud-based workflow 
for OpenXC dataset to compare any number of car drivers 
with each other.  
 
      In DATAVIEW [17], we developed an OpenXC 
workflow, that consists of six individual workflow tasks (Fig. 
3). For each individual car driver we calculated her driving 
brehavior. This workflow has two main stages, in the first 
stage it computes how unsafe the driver is based on the 
braking ability and in the second stage it evaluates the vehicle 
speed of the driver  in order to to compute the risk level of the 
driver. 
Description of the workflow tasks are as follows: 
Task 1 – getDriverInfo: This workflow task gets the OpenXC 
raw data set as well as car driver id,  and returns the signal 
details for that particular car driver.  
Task 2 - BrakeSpeedDistribution: This step is used to compute 
how unsafe the driver is, based on her braking ability. For 
every pair of brake pressed (true and false value), the 
workflow will output the total time driven without pressing 
brake and the top 5 vehicle speed.  
Task 3 – getAddByLatLon: In this step, the address where the 
signal is captured is calculated by using the Google API and 
Latitude and Longitude signal.  
Task 4 – chkHighway: This task is used to compute decide if 
the car is on highway or not by using a google places API. It is  
based on the address where the signal is captured.  
Task 5 – getSpeedLimit: This task is used to get the speed 
limit posted on the road. This workflow will automatically set 
the speed to 65 if it is highway. If not highway it will set the 
speed limit to 45. 
Task 6 –speedCheck: This task is to compare the top 5 actual 
vehicle speed with the speed limit posted on the road in order 
to compute the total number of times the driver exceeded the 
speed limit.  

Task 7 –compareDriver: This task is used to compare different 
drivers based on their speed distribution and braking ability. 

 

 
Algorithm 1.  Task Placement Strategy (TPS)  
Input:  
       T:                      set of workflow tasks,  
       TP:                   task interdependency matrix,  
       popsize:            size of population , 
       er:                     rate of elitism, 
       cr:                     rate of crossover, 
       mr:                    rate of mutation, 
       :                       TG threshold, 
Output: 
       The best task placement scheme,  
 
 

1. Begin 

2.    for i = 1 to popsize do 

3.        Generate a  task placement scheme randomly; 

4.       ; 

5.    end for 

6.    Do 

7.         oldTG = The highest TG in Pop; 

8.        ne = popsize  er;  //  number of elitism 

9. The best ne task placement schemes in Pop; 

10.       nc = popsize * cr; // number of crossover   

11.       for i =1 to nc do 

12.        randomly select two task placement scheme and   
from Pop; 

13.           generate C and D by one-point crossover for  tasks of 
          and ; 

14.          ; 

15.          ; 

16.     end for 

17.     nm= popsize mr;// number of mutation   

18.     for i =1 to nm do 

19.          select a task placement scheme  from ; 

20. mutate randomly a virtual machine position  numbe
in  ; 

21.           ; 

22.      end for 

23.      Pop  and ; 

24.      newTG = The highest TG in Pop;   

25.    while (|newTG - oldTG| / oldTG   ) 

26.    return the best task placement scheme ; 

27. end 

   Fig. 3 shows the OpenXC workflow for comparing driving 
behavior for two car drivers. There are 6 individual tasks and 
13 datasets (both original and intermediate datasets) for each 
car driver. To create a workflow with the large number of tasks 
and data products, we repeat the above workflow with a 
different number of car drivers under the assumption that each  

Yes 

No 

Calculate Task 
Interdependency 
Matrix (TM) 

Generate a set of 
task placement 
scheme randomly 
(P) 

Compute the 
heuristic value of 
each scheme (TG) 

Termination 
Conditions? 

Return the best task placement scheme  

Apply Selection (SE), 
Crossover (Co) and Mutation 
(MU) to generate a new 
population of task placement 
schemes 
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task can be executed on different virtual machines. For our 
experiments, we consider 2, 10, 20, 50 and 100 car drivers with 
a total number of tasks, [13, 61, 121, 301, 601]. In our 
experimental setting, we used virtual machines in the range of 
5-25 with a range of 5GB-20GB of storage capacity (as shown 
in Table 1). The input OpenXC datasets are synthetic datasets 
built from the data recorded by real car drivers [18]. We 
demonstrate the performance of our proposed task placement 
algorithm by comparing it with k-means clustering, and a 
randomly generated task placement approaches with the 
average of the workflow communication cost defined in section 
3. Based on our experiments, we observe that our results shown 
in Table 2 outperform the other task placement schemes. 

B. Implementation 

In our DATAVIEW system, we integrated the big data 
workflow engine subsystem with FutureSystems academic 
cloud provider in order to automatically provision virtual 
machines to execute big data workflows in the Cloud. We 
implemented bash scripts to automatically provision virtual 
machines by first creating a new image and configure both the 
hardware and software settings.  
   Workflow execution is transparent to our data scientists. 
They can just create and run any arbitrary workflow and the 
system deploys a set of virtual machines, datasets and moves 
workflow tasks to the corresponding virtual machine. At 
design time, our TPS algorithm parses the specification of the 

workflow and identifies an optimal mapping of the workflow 

tasks to the corresponding virtual machines. At run time, the 
DATAVIEW system moves the workflow task to the 
corresponding virtual machines based on the mapping 
generated by TPS. Finally the workflow is executed in a 
distributed manner as a means to improve the performance of 
the TPS. Please note that workflow scheduling is out of the 
scope of this study. The order of workflow tasks execution 
(sequential, pipeline or parallel) is not specified by TPS. TPS 
can be invoked by any workflow scheduler to obtain an 
optimal placement and therefore minimize workflow 
makespan. For our experiments in three approaches, we ran 
workflow tasks sequentially from entry task till the exit/final 
task. 
Table 3 shows the description of running the OpenXC 
workflow of Fig. 3 and Table 4 shows some of the result of 
applying TPS for the execution of workflow in Example 1.  

C. Results 
 Fig. 4 shows the Workflow Communication Cost (WCC), in 

terms of hour by varying the number of tasks and fixing the 
number of virtual machines. Our experiments show that WCC 
cost increases with a large number of tasks and data products in 
both algorithms. However, it can be seen clearly that our 
strategy reduces WCC compared to the k-means clustering and 
Random algorithms. In the next step, we calculate WCC by 
varying the number of virtual machines and fixing the number 
of tasks (Fig. 5). Although WCC is increased by increasing the 
number of virtual machines, the increasing rate of our strategy 
is slower than the k-means clustering and Random strategies.  
In addition, it shows at some point, provisioning new Cloud 
resources like virtual machines does not affect the workflow 
performance as we may have many idle virtual machines. 

5. RELATED WORK 
 Both data and workflow task placement becomes a 

fundamental research task in the cloud due to the rapid 
increase of accessible large datasets over the Internet and the 

 

TABLE 2. DEFAULT SETTING FOR TPS ALGORITHM. 

Overall dataset and virtual machine 
Maximum population size 

Initial population 
Maximum generation 
Crossover probability 
Mutation probability 

TG threshold 

100 
Randomly generation 

100 
0.8-0.9 
0.3-0.5 
0.01-0.1 

TABLE 1. DESCRIPTION OF TASK AND VIRTUAL MACHINE OF THE 
EXPERIMENT. 

Overall task and virtual machine 
# of tasks 

# of virtual machines 
virtual machines computing capacity 

data transfer rate between virtal machines 

[13, 61, 121, 301, 601] 
 [5, 10, 15, 20, 25] 

5GB – 20GB 
5MB per second  

TABLE 4. SOME RESULT OF APPLYING TPS FOR THE EXECUTION OF 
WORKFLOW IN EXAMPLE 1. 

The best task placement scheme in the
First population <t#, vm#> Last (10th ) population <t#, vm#>

TABLE 3. OPENXC WORKFLOW OF ONE CAR DERIVER RUNNING IN 
DATAVIEW 

Task Name Execution 
Time (hrs) 

Input Data 
Size(GB) 

Output Data 
Size(GB) 

VM# 

vm1 

vm2 

vm1 

vm3 

vm1 

vm2 

FIGURE 3. OPENXC WORKFLOW FOR COMPARING TWO CAR DRIVERS. 
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emerging field of big data. Previous research studies for 
distributed computing environment have been mainly focused 
on the performance modeling and optimization of job 
scheduling and task placement. Kosar et al., [12] proposed a 
framework for distributed computing systems, which 
considered both the data placement and computation modules 
as two separate subsystems. In this framework, data placement 
module was proposed as an independent job that can be 
scheduled and managed like the computation jobs.  Kayyoor et 

al., [11] considered data replication along with data placement 
for the distributed environments. Instead of minimizing of 
query latencies, their goal was to minimize the average 
number of dedicated computation nodes. For this, they 
grouped the most similar data together based on their 
occurrences in common query accesses.  

By applying task placement and data replication services, 
Chervenak et al., [13] evaluated and displayed the benefits of 
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FIGURE 4. WORKFLOW COMMUNICATION COST (HOURS) BY VARYING THE NUMBER OF WORKFLOW TASKS. 

FIGURE 5. WORKFLOW COMMUNICATION COST (HOURS) BY VARYING THE NUMBER OF VIRTUAL MACHINES. 
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pre-staging data compare to the data stage processing of the 
Pegasus. 

In Catalyurek et al., [4] workflows were modeled by the 
hypergraph concept and a hypergraph partitioning technique, 
k-way partitioning, is applied to minimize the cutsize. In that 
way, they clustered the workflow tasks as well as their 
required data in the same execution site. Yuan et al., [14] 
applied a greedy binary clustering technique to pre-cluster 
datasets at design-time based on the workflow task 
dependencies. Er-Dun et al., [8] proposed a Genetic Algorithm 
for data placement that considered a load balancing factor. 
Their approach reduced data movement, but they did not 
consider task interdependency factor and cluster the data based 
on the data similarity.  

In our previous work, we proposed big data placements 
strategy (BDAP) in order to place the most interdependent 
datasets in the same virtual machine in the Cloud by 
considering their common workflow tasks. BDAP minimized 
the total amount of data movement between virtual machines 
during the execution of the workflows. TPS is about task 
placement and can be applied independently or in conjecture 
with BDAP to place both data and workflow takes together. 

6. CONCLUSIONS AND FUTURE WORK 
    We proposed TPS, a task placement strategy for big data 
workflows. TPS minimized the total amount of data movement 
between virtual machines during the execution of the 
workflows. Our extensive experiments and comparisons 
indicated that TPS outperformed the k-means clustering and 
Random algorithms so as to minimize data movement.  
        Big data workflows consume and produce huge datasets. 
Applying task/data replication can reduce data movement as 
well. So in future work, we plan to improve TPS by applying 
task/data replication techniques. In addition, we considered 
task placement for executing of an individual workflow. 
However, in real world, multiple workflows can be executed 
concurrently. Therefore, we plan to extend the TPS strategy in 
order to achieve task placement for the execution of multiple 
workflows simultaneously. For the other future work, we will 
enhance the performance of both BDAP and TPS strategies by 
using Cultural Algorithm (CA).   
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