
International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

TASK	 AND	 DATA	 ALLOCATION	 STRATEGIES	 FOR	 	
BIG	 DATA	 WORKFLOWS	

Mahdi	 Ebrahimi,	 Aravind	 Mohan,	 Andrey	 Kashlev,	 Shiyong	 Lu,	 Robert	 G.	 Reynolds	

Wayne	 State	 University	 	

Detroit,	 U.S.A.	
{mebrahimi, amohan,	 andrey.kashlev,	 shiyong,	 robert.reynolds}@wayne.edu	

ABSTRACT	

The	 makespan	 of	 a	 big	 data	 workflow	 is	 the	 time	 elapsed	 between	 the	 start	 of	 the	 first	 task	 and	 the	
completion	 of	 the	 last	 task	 in	 the	 workflow.	 This	 time	 includes	 the	 delivery	 of	 the	 final	 data	 product	 to	 the	
desired	 location	 within	 the	 network.	 Due	 to	 the	 large	 number	 of	 inputs	 and	 intermediate	 outputs	 of	 a	 big	 data	
workflow	 activity,	 the	 makespan	 of	 the	 workflow	 is	 significantly	 influenced	 by	 how	 its	 tasks	 and	 datasets	 are	
allocated	 in	 a	 distributed	 computing	 environment.	 Therefore,	 reducing	 makespans	 of	 big	 data	 workflows	 can	
be	 achieved	 by	 incorporating	 a	 data	 and	 task	 allocation	 strategy	 into	 the	 execution	 planning	 phase	 performed	
by	 a	 workflow	 management	 system.	 This	 creates	 a	 pressing	 need	 for	 an	 investigation	 of	 such	 strategies.	 To	
address	 this	 need,	 this	 paper	 provides	 a	 formal	 definition	 of	 the	 makespan	 minimization	 problem	 for	 big	 data	
workflows	 and	 proposes	 efficient	 workflow	 execution	 planning	 strategies.	 In	 particular,	 two	 algorithms,	
WEP-‐A	 and	 WEP-‐B,	 following	 different	 strategies	 are	 proposed.	 WEP-‐A	 follows	 a	 phased	 approach	 to	 the	
generation	 of	 an	 execution	 plan	 whereas	 WEP-‐B	 uses	 an	 evolutionary	 algorithm-‐based	 optimization	 strategy	
to	 find	 a	 valid	 plan	 with	 the	 shortest	 makespan.	 Both	 of	 these	 strategies	 are	 evaluated	 through	 extensive	
simulation	 experiments	 by	 varying	 workflow	 graphs	 and	 resources	 in	 the	 workflow	 environment.	 The	 results	
of	 the	 experiments	 demonstrate	 that	 WEP-‐B	 performs	 better	 than	 WEP-‐A	 on	 a	 set	 of	 benchmark	 examples.	
For	 more	 complex	 and	 large	 workflows,	 the	 improvements	 due	 to	 evolutionary	 optimization	 in	 WEP-‐B	 are	
likely	 to	 be	 even	 more	 dominant.	

Keywords:	 Data	 Allocation,	 Big	 Data	 Workflows,	 Evolutionary	 Algorithm,	 Distributing	 Computing.	

1.	 INTRODUCTION	

Complex scientific computations are often
modeled as workflows. Among other benefits,
decomposing a complex application into a workflow
simplifies the design effort, enables the reuse of
computational modules, and allows their parallel and
pipelined execution. The concept of workflow
applications is used widely in scientific research in a
variety of domains such as bioinformatics, physics,
astronomy, ecology and earthquake science (Lu and
Zhang, 2009, Lim et al., 2010, Juve and Deelman,

2010). Given the computing, storage and networking
technologies, coupled with the increased capacity to
perform collaborative scientific research, there is an
increased need to produce efficient scientific
workflows.

 A data-centric workflow management system
(DWFMS) is a platform designed to support two key
functions: 1) the design and specification of
workflows using a visual drag and drop interface; and
2) the configuration, execution and monitoring of
workflow runs. Examples of representative DWFMS
systems include Taverna (Hull et al., 2006), Kepler
(Ludäscher et al., 2005), VisTrails (Freire, et al.,
2006), Pegasus (Deelman et al., 2005), Swift (Zhao et
al., 2007), and DATAVIEW (Kashlev and Lu, 2014,
Chebotko et al., 2007). Traditionally, these systems

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

use a directed acyclic graph (DAG) abstraction to
model a workflow, where each vertex of the graph
represents a workflow task, and each directed edge
between two vertices depicts the dataflow between
them.

In order to meet the demands of big data
workflows, the design interface and DAG abstraction
must be expanded to explicitly model both data-
centric and computational activities. The execution
module must also be modified in order to include
execution planning and preparation functions to
decide, allocate and move data sets and tasks to their
respective hosts in the target distributed computing
environment. The determination of an efficient
execution plan is a non-trivial exercise when the
workflow involves big data sets and hundreds or
thousands of complex tasks (Bharathi et. al., 2008,
Deelman and Chervenak, 2008).

This paper contributes toward the enhancement of
existing DWFMSs in the area of execution planning
of big data workflows. Workflow execution planning
is directed by the strategy adopted for the allocation
of data and workflow tasks. The strategies proposed
here seek to minimize the total execution time (a.k.a.
makespan) of the workflow. Makespan is defined as
the time that elapsed between the start of the first task
and the completion of the last task in the workflow,
including the delivery of final data products to a
desired place. A big data workflow involves big
datasets, either as inputs or intermediate outputs.
Therefore, the makespan can vary greatly depending
on how the tasks and datasets are allocated in the
distributed computing environment. The utilization of
a data and task allocation strategy that minimizes the
makespan of a big data workflow can deliver
significant benefits to users in getting their results in
time.

The remainder of the paper is organized as
follows. Section 2 describes the characteristics, and
assumptions of the workflow execution environment
needed to support such a model. An extended
graphical model of big data workflows and the
concept of execution plans are presented in section 3.
In Section 4, a formal definition of the makespan
minimization problem of big data workflows is
provided. Two efficient algorithms are proposed to
solve it. In Section 5, the proposed algorithms are
compared with a random allocation strategy using
extensive simulation runs. A brief overview of
related work appears in Section 6. The paper
concludes in Section 7 with a summary of the key
contributions of the paper.

2.	 BIG	 DATA	 WORKFLOW	
EXECUTION	 ENVIRONMENT	

An execution environment for a big data
workflow is comprised of geographically distributed
autonomous sites spread around the globe. In this
paper, these sites are defined as ‘hosting’ sites, or
simply as ‘hosts’. The hosts may be heterogeneous in
various ways, but all have the capability to provide
data hosting service and/or compute (task execution)
services.

Hosts can be classified into three basic types: a
data host; a task host; and a hybrid host. A “data
host” provides only data hosting services. It will act
on data storage and data transfer requests, but cannot
be used to perform arbitrary workflow tasks. A “task
host” can be used to run workflow tasks, but cannot
be used for (durable) data hosting. It is able to
provide enough temporary scratch storage for all
input and output data sets that relate to the execution
of allocated tasks. A “hybrid host” is capable of
providing data hosting services as well as compute
services.

 For a collection of ‘hosts’ to serve as an
execution environment for a particular big data
workflow, there must be a communication capability
to stream big data sets from each host to all other
hosts in the collection. Furthermore, there must be an
agreement that allows such streaming to take place at
a predicted level of service and time. In addition ‘task
hosts’ must be available to run workflow tasks on
demand, as dictated by the workflow management
system.

The notion of ‘host’ is a generic abstraction for
packaging storage and computing capacity and does
not imply a specific underlying architecture or
business model. Notable examples of ‘hosts’ include
public clouds, private clouds, HPC data centers, and
Grid nodes. Here it is assumed that the internal
architectures of the ‘host’ implementations will
provide data and computing services with predictable
SLA’s in terms of data transfer rates and processing
speeds.

The first step in the production of a mathematical
formulation of the makespan minimization problem
is to characterize the properties of a “host”. The
three basic properties of a “host” in the model are

• Available Storage Capacity – This attribute is
relevant to hosts of type ‘data’ or ‘hybrid’. The
‘Available Storage Capacity’ refers to the capacity
available for the execution of a particular workflow

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

and does not reflect the total storage capacity of the
host in question. The available storage capacity may
be less than the total capacity as a result of a sharing
policy or another service agreement. An elastic
storage service provided by the host may allow
available storage capacity to be changed. However, it
is assumed in the model that such changes occur prior
to and outside the execution planning of a particular
workflow run. Thus, for the purpose of this
formulation, available storage capacity of a ‘host’ is
fixed and is specified using the same units, such as
megabytes for each host.

• Available Data Transfer Bandwidth – This
attribute allows the prediction of the time required to
transfer a dataset from one ‘host’ to another. The
available data transfer bandwidth may be limited by
the connectivity of the host, and/or by a service level
agreement.

• Available Compute Capacity – This attribute is
applicable to hosts of type ‘task’ or ‘hybrid’ and
allows the prediction of the processing time of a
workflow task as well as the number of workflow
tasks that can be executed in parallel on the host
without impacting individual task execution times.
As with storage capacity, compute capacity can be
constrained by policy or service level agreements.

Note that the above three attributes are not fixed
or static for a host at all times. These are considered
to be established priori prior negotiations and remain
unchanged during the execution planning and
subsequent execution of an individual workflow.

For workflow execution planning purposes, it is
assumed that all of the hosts in the workflow
environment are fully reliable and available. The
responsibility of ensuring these characteristics lies
with individual hosts and is covered by their SLA’s.
The impact of the recovery and high-availability
mechanisms is reflected in the expected processing
times of tasks and expected data transfer rates
associated with the host.

3.	 FORMULATION	 OF	 WORKFLOW	
EXECUTION	 PLANNING	

 To formalize the workflow execution planning
problem, formal descriptions of the following are
needed:

• Big Data Workflow Execution Environment

• Big Data Workflows

• Big Data Workflow Execution Plan

Table 1 summarizes all the symbols and notations
used in the following definitions.

Definition 1: (Big Data Workflow Execution
Environment) - A big data workflow execution
environment Ω is defined as a 6-tuple Ω ≡ {H,
TYPE, ASC, ACC, DTR, CR}; where for all h∈,
ASC(h) = 0 if TYPE(h) = ‘task’ and ACC(h) = 0 if
TYPE(h) = ‘data’. In terms of the big data execution
environment defined above, big data workflow
represented as a directed acyclic multipartite graph as
given below.

Definition 2: (Big Data Workflow) –	 A big data
workflow, W, is represented as a directed acyclic
graph as a 3-tuple, Ⱳ≡(V, E, SIZE), where the set of
nodes, V, satisfy the following properties:

• There are two special nodes called entry and
exit nodes of type ‘task’.

• For each dataset referenced in the workflow
there is a unique node ‘x’ in V where NODETYPE(x)
=’data’ and vice versa.

• For each task in the workflow there is a unique
node ‘n’ in V where NODETYPE(n) =’task’ and vice
versa.

The set of edges, E, satisfy the following
properties:

• There is no edge exy∈E where x = y, i.e., there
is no edge or self-loop from a node to itself.

• There is no edge exy∈E, such that if ‘y’ is the
entry node, there is no incoming edge to the
entry node.

• There is no edge exy∈E, such that if ‘x’ is the
exit node, there is no outgoing edge from the
exit node.

• There is no edge exy∈E where NODETYPE(x)
= NODETYPE(y). That is, there is no edge
between nodes of identical type.

• For each node y in V, there is exactly one edge
exy∈E if NODETYPE(y) = ‘data’. That is,
there is exactly one incoming edge to a
datanode.

• For each node y in V, where ‘y’ represents a
pre-existing dataset (input to the workflow), there

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

is exactly one edge exy∈E where ‘x’ is the entry
node.

Table 1: Notations Summary
 Notation Description
Ω Workflow Execution Environment
H Set of hosts in Ω .
M Total number of hosts in H.
hk kth host in H; 1 ≤ k ≤ m.
TYPE A function mapping hosts to unique types;

TYPE: H → (‘data’, ‘task’, ‘hybrid’).
ASC A function mapping hosts to their

available storage capacities.
ASC: H → I, where I is the set of non-
negative integers.

ACC A function mapping hosts to their
available compute capacities.
ACC: H → I, where I is the set of non-
negative integers.

DTR A function mapping a pair of hosts to data
transfer rates between them.
DTR: H × H→ R, where R is the set of
non-negative real numbers.

CR Compute Rate Function giving compute
rate for each host
CR: H → R, where R is the set of non-
negative real numbers.

Ⱳ Scientific Workflow Graph
V Set of nodes in Ⱳ.
NODETYPE A function mapping nodes to node types as

“Data’ or ‘Task’.
NODETYPE: V → {‘Data’, ‘Task’}

Ᵽ An ordered partitioning of V into disjoint
sets called partitions where nodes in a
partition are of identical type.

|Ᵽ| Number of partitions in Ᵽ.
Pi ith partition in Ᵽ.
E Set of directed edges in Ⱳ.
exy Directed edge from node ‘x’ to node ‘y’ in

V.
SIZE A function mapping nodes to numbers.

SIZE: V → I, where I is the set of non-
negative integers.

pred(x) pred(x): {y| y ∈ V, where there exists an
edge eyx ∈ V}.

Ω A workflow execution plan for a given
workflow graph Ⱳ and the workflow
execution environment Ω .

Φ Mapping of nodes in Ⱳ to hosts H in Ω .
Γ A scheduling function that computes the

scheduled start time, the scheduled
completion time, and thescheduled release
time for each node in Ⱳ.
Γ: V → {Scheduled Start Time, Scheduled
Completion Time, Scheduled Release
Time }

startx(Γ) Scheduled start time for node ‘x’ generated
by the scheduling function Γ.

finishx(Γ) Scheduled completion time for node ‘x’
generated by the scheduling function Γ.

releasex(Γ) Scheduled release time for node ‘x’
generated by the scheduling function Γ.

requires A function that computes the maximum
storage required for any host ‘h’ of type
‘data’ or ‘hybrid’ at the same time during
the execution plan ω.

requireS: H → ω Number of Storage Units
require A function that computes the maximum

number of tasks assigned to any host ‘h’
of type ‘task’ or ‘Hybrid’ at the same time
during the execution plan ω.
requireC: H → ω Number of Compute
Tasks to be executed in parallel

restrictedHosts List of hosts where a node ‘x’ is restricted
for mapping by policy.
restrictedHosts: V → {set of hosts}

transfer(x, y) Data transfer time between nodes ‘x’ and
‘y’ which varies depending upon the
mapping of nodes to hosts.

The SIZE function satisfies the following
properties:

• SIZE(x) = 0, if ‘x’ is the entry or exit node.

• For any ‘x’∈V, if NODETYPE(x) = ’data’,
then SIZE(x) represents the size of the corresponding
dataset in units of data storage /transfer.

• For any ‘x’∈V, if NODETYPE(x) = ’task’,
then SIZE(x) represents the compute cycles required
for the execution of the corresponding task.

A dataset node corresponds to a unique dataset in
the workflow and represents the data-centric activity
for the transfer of the dataset from one host to
another. The dataset is treated as an atomic unit for
the purpose of storage and data transfer. A task node
corresponds to a compute-intensive activity in the
workflow. A workflow activity that is both data and
compute centric can be modeled by a task node
preceded and succeeded by data node. Therefore in
model, the terms dataset (task) and dataset (task)
node interchangeably.

We include an edge from the entry task node to
each of the input dataset nodes, as if these were all
produced as outputs of the entry task. The entry task
is a pseudo task with a zero processing time and is
introduced to model the start of the workflow.
Likewise, an exit task node also represents a pseudo
task with zero processing time that models workflow
termination.

3.1	 MULTIPARTITE	 NATURE	 OF	 THE	 WORKFLOW	 	
A big data workflow Ⱳ as described in the

preceding section has a multipartite structure
revealed by the partitioning Ᵽ as follows:

• Ᵽ ≡ {Pi}; 1 ≤ i ≤m; where m is the total number
of ordered partitions and Pi denotes the ith partition.

• For each pair of partitions Pi and Pj in Ᵽ, Pi∩Pj
= φ, i.e., the partitions are disjoint.

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

• Each node in V belongs to exactly one partition
in Ᵽ.

• For any pair of nodes ‘x’ and ‘y’ in any
partition Pi; 1 ≤ i ≤ m, NODETYPE(x) =
NODETYPE(y), i.e., all nodes in a partition are of
the same type and there is no edge between nodes in
the same partition.

The partitions are indexed in order as follows:

• The first partition P1 contains the entry node
only.

• The last partition Pm contains the exit node
only.

• There is no edge in E from a node in Pj to a
node in Pi; 1 ≤ i < j ≤ m.

• For each node ‘x’ in any partition Pi; 1< i ≤ m,
there is at least one edge from a node in partition Pi-1.
This condition implies that each node is placed in the
lowest possible numbered partition.

The definition order of partitions in Ᵽ implies the
following properties:

Property 1: The number of partitions, |Ᵽ|, is a
finite odd number.

Property 2: Even numbered partitions contain
only dataset nodes and odd numbered partitions
contain only task nodes.

Property 3: There are no edges from a node in an
even (odd) numbered partition to nodes in an even
(odd) numbered partition.

Property 4: For each node in all even numbered
partitions (a partition comprising of dataset nodes),
there is exactly one incoming edge and one or more
outgoing edges.

Property 5: For each node in all odd numbered
partitions, there is at least one incoming edge (except
the first partition) and at least one outgoing edge
(except the last partition). The first partition has no
incoming edge and the last partition has no outgoing
edge.

Property 6: For any pair of nodes ‘x’ and ‘y’ in
V, if y∈pred(x) and ‘x’∈Pi and ‘y’∈Pj, then j < i.

Definition 3: (Usage Scope of a Dataset). The
Usage Scope of a dataset node ‘x’ is defined by an
ordered pair of indices (i, j); 1< i <j ≤m where ‘x’∈ Pi

and j is the highest index such that there is an edge
from ‘x’ to a node in Pj.

Understanding the usage scope of a dataset allows
the release of storage occupied by it at the earliest
possible time. If an intermediate dataset produced
during a workflow run must be kept in storage for
future runs or other workflows, the situation is
represented by including an edge from the dataset
node to the exit node.

3.2	 PARALLEL	 EXECUTION	 OF	 TASKS	 IN	 THE	
WORKFLOW	
 To minimize the completion time of a workflow,
one must execute workflow tasks in parallel as much
as possible. Based upon the model of workflow
presented so far, it is clear that the tasks belonging to
the same partition can be executed in parallel
provided that there is sufficient available compute
capacity. The following equation gives the maximum
possible degree of parallelism in a workflow:

Maximum Possible Parallelism = max |Pi| (1 < i <
m; i is odd); where |Pi| is the number of nodes in
partition Pi.

The actual parallelism may be restricted by
available compute capacity or by design to minimize
the delays due to dataset transfers. Thus, there is a
tradeoff between exploiting parallelism and
minimizing dataset transfers. Furthermore, these
tradeoffs must follow the resource constraints of the
workflow execution environment. Figure 1 shows a
workflow graph.

3.3	 WORKFLOW	 EXECUTION	 PLAN	 	
 A workflow execution plan lays out the mapping

of hosts to nodes in the workflow graph and the
relative timings when a task/data transfer is
scheduled to start and complete, and when the
resources occupied by a node can be released. The
relative timings in the plan depend on the processing
and data transfer times which in turn depend on the
mapping of hosts to nodes in the workflow graph.

Definition	 4:	 (Big	 data	 Workflow	 Execution	
Plan).	 A big data workflow execution plan is
formally defined as a tuple ω ≡ (Φ, Γ), where

• Φ is a mapping function such that for each node
‘x’ in V, Φ(x) = ‘h’ where ‘h’∈H.

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

• Γ is a mapping function such that for each node
‘x’ in V, Γ(x) = {startx, finishx, releasex}. All times
are relative to the start time of entry node. Γ (entry
node) = {0, 0, 0}.

To calculate the makespan of an execution plan in
partition-based approach we need to obtain maximum
storage (requestS) and compute requirements
(requestC) of a host at any point within an execution
plan. Function 1 computes requestS and request of a
host in any step of an execution plan.

An execution plan must be valid in order to be
realized in a workflow. For an execution plan to be
valid, it must satisfy the following constraints:

• Hosting Restrictions
• Host Type Constraints
• Storage Capacity Constraints	
• Compute Capacity Constraints
• Precedence Constraints

These constraints are formally defined below.

Constraint 1: (Hosting Restrictions) – The
execution plan ω satisfies the restricted mapping
constraint if and only if for each node ‘x’ in V, if
Φ(x) = ‘h’ then ‘h’ ∉ restrictedHosts(x). A mapping
policy may restrict a node to be mapped to certain
hosts or the host for a given node is predetermined
and fixed. For example, certain dataset in raw forms
may not be allowed to cross national boundaries
during the makespan process.

Constraint 2: (Host Type Constraints) – The
execution plan ω satisfies the host type constraint if
and only if for each node ‘x’ in V, Φ(x) = ‘h’, then
either NODETYPE(x) = ‘data’ and TYPE(h) ≠ ‘task’
or NODETYPE(x) = ‘task’ and TYPE(h) ≠ ‘data’.

Constraint 3: (Storage Capacity Constraints) –
The execution plan ω satisfies the storage capacity
constraint if and only if requestS(h) < ASC(h) for
each host ‘h’ in H in the plan ω. Function 1 shows the
procedureemployed to compute requestS(h).

Figure 1. A data-centric workflow with five tasks, five input
datasets, four intermediate datasets, and one output set.

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

Constraint 4: (Compute Capacity Constraints)
– The execution plan ω satisfies the compute capacity
constraint if and only if requestC(h) < ACC(h) for
each host ‘h’ in H in the plan ω. Function 1 shows the
procedure to compute requestC(h).

Constraint 5: (Precedence Constraints) – The
execution plan ω satisfies the precedence constraint if
and only if for each pair of nodes ‘x’ and ‘y’, if there
is an edge from ‘x’ to ‘y’ in E then starty > finishx +
transfer(x, y), and releasex > finishy where transfer(x,
y) = (SIZE(x) + SIZE(y)) × DTR(Φ(x), Φ(y)).

3.4.	 WORKFLOW	 EXECUTION	 PLANNING	
PROBLEM	

Definition 5: (Makespan of an Execution Plan)
- Given an execution plan ω, the makespan of ω,
makespan(ω), is the total execution time of the
workflow.

Definition 6: (Makespan Minimization
Problem) – Given a workflow graph Ⱳ and the
workflow execution environment Ω , a makespan
minimization problem is formally defined as the
problem of finding a workflow execution plan ω

optimal such that 1) ωoptimal is a valid execution plan,
and 2) for all valid execution plans ω,
makespan(ωoptimal) ≤ makespan(ω).

4.	 SOLUTIONS	 FOR	 WORKFLOW	
EXECUTION	 PLANNING	

In this section two main solutions for finding
heuristic solutions to the workflow execution
problem formulated in section 3.4 are described.
These solutions follow completely different
approaches which are subsequently compared and
evaluated by experiments. First approach is based on
construction of execution plan one at a time in the
ascending order. Algorithm 1, also called WEP-A,
describes the solution based on the first approach.
Second approach, called WEP-B is described in
Algorithm 2 and is based on a meta-heuristic
optimization technique. Figure 2 represents
partitioned layout of the workflow shown in Figure 1.

4.1	 ALGORITHM	 1:	 WEP-‐A	
The WEP-A algorithm works on the input

workflow laid out as a finite set of partitions.
Workflow task nodes belong to odd numbered
partitions and dataset nodes to even numbered
partitions First	 WEP-‐A	 algorithm	 computes,	 for	
each	 partition,	 the	 set	 of	 preferred,	 permissible	

and	 other	 hosts	 for	 each	 workflow	 node	 host	
(lines	 6-‐12).

Function 1. Computing requestS and requestC for a
host
Input:
 ω : Execution Plan ω, host ‘h’∈H,
 h∈H: host
Output:
 maximum storage and compute requirements of host h,
requestS(h) and requestC(h)

1.

BEGIN

2. nodes = storageCounts = computeCounts = {}; // set
of counts

3. counted = {}; // set of node

4. countS = countC = 0;

5. For each node ′𝑥′ ∈ H

6. If Φ(x) = ‘h’ then

7. nodes ← ‘h’; // add ‘h’ to nodes

8. End If

9. End For

10. For each node ‘x’ ∈ node

11. If (‘x’ ∉ counted) then

12. counted ← ′𝑥′;

13. countS = SIZE(‘x’);

14. countC = 1;

15. For each node ‘y’ ∈ nodes and ‘y’ ≠’x’

16. If ((‘y’ ∉ counted) And ((startx ≤ starty ≤
releasex) Or (starty ≤ startx ≤ releasey)))

17. countS = countS + SIZE(‘y’);

18. countC = countC + 1;

19. counted ← ′𝑦′;

20. End If

21. End For

22. storageCounts ← countS;

23. computeCounts ← countC;

24. End if

25. End For

26. requestS = max{storageCounts}; //maximum of
all storage counts

27. requestC = max{computeCounts}; //maximum of
all compute counts

28. return requestS(h), requestC(h);

29. END

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

Figure 2: Workflow of Figure 1 shown as Ordered
Partitions.

A	 valid	 mapping	 of	 workflow	 nodes	 to	 the	
available	 hosts	 is	 then	 computed	 next	 (lines	 13-‐
18).	 Following	 that,	 start	 and	 finish	 times	 of	 each	
workflow	 nodes	 in	 the	 plan	 are	 calculated	 (lines	
19-‐26).	 The	 unused	 datasets	 are	 released	 in	 order	
to	 increase	 the	 storage	 capacity	 of	 the	 hosts	 (lines	
27-‐31).	 Finally,	 the	 algorithm	 calculates	 the	
makespan	 of	 the	 execution	 plan	 and	 returns	 both	
an	 execution	 plan	 and	 its	 makespan	 as	 outputs	
(lines	 35-‐43).	

4.2	 ALGORITHM	 2:	 WEP-‐B	 	
Algorithm	 WEP-‐B	 proceeds	 by	 generating	 an	

initial	 population	 of	 valid	 execution	 plans.	 The	 size	
of	 the	 population	 population_size	 is	 an	 input	
parameter	 to	 the	 algorithm.	 Execution	 plans	 along	
with	 their	 makespans	 are	 retained	 for	 the	 next	
step.	 The	 algorithm	 is	 then	 iterated	 a	 number	 of	
times	 as	 described	 by	 another	 input	 parameter	
num_iterations.	 Alternatively,	 the	 algorithm	 can	 be	
terminated	 by	 checking	 a	 convergence	 criterion	 	

Algorithm 1. WEP –A : Incremental Generation of
Execution Plan by Partitions
Input:
 W(Ᵽ, E, SIZE): Workflow graph where Ᵽ = {Pi}; 1 ≤ i ≤m,
 Ω(H, TYPE, ASC, ACC, DTR, CR): Workflow Execution
environment

Output:
 Execution Plan ω, Makespan(ω)

1. BEGIN

2. finishentry node = startentry node = releaseentry node = 0;

3. Φ(x) = ‘client’ if x is tentry or texit , otherwise Φ(x) = φ;

4. i = 2; // P1 = tentry and Pm = texit

5. For each Pi (1<i < m) do

6. sorted_node_list = nodes in Pi sorted by descending
order of SIZE;

7. While sorted_node_list ≠ φ do

8. x = remove next node in sorted_node_list;

9. If Φ(x) ≠ φ then break; // this will be true for nodes
with pre-existing fixed allocation

10. permissible_hosts = {h: h ∈ H And h∉
restrictedHosts(x) And
 (if NODETYPE(x) == ‘Data’ then (TYPE(h) ≠
‘Task’ And SIZE(x) ≤ ASC(h)) else

 TYPE(h) ≠ ‘Data’ And SIZE(x) ≤ ACC(h)};

11. preferred _hosts = permissible_hosts ∩{Φ(y): y∈
pred(x)};

12. other_hosts=permissible_hosts - preferred _hosts;

 // find a valid mapping

13 If preferred _hosts ≠ φ then

14. If (NODETYPE(x) ==’Data’)

15. Φ(x)=argmin! DTR(�(𝑦), ℎ) for all h∈preferred
_hosts

16. Else

17. Φ(x)= argmin! CR(ℎ) for all h∈preferred _hosts

18. End if

19. End if

 // compute the scheduled start and finish timings in the
plan

20. If (NODETYPE(x) == ‘Data’) then

21. startx = finishy: y = pred(x);

22. finishx = startx + (SIZE(x) × DTR(Φ(y),Φ(x)));

23. ASC(Φ(x)) = ASC(Φ(x)) - SIZE(x);

24. Else //x is a task node

25. startx = max (finishy + SIZE(y) × DTR(Φ(y), Φ(x))) :
y∈pred(x);

26. finishx = startx + (SIZE(x) × CR(Φ(x));

27. releasex = finishx;

P# Workflow Mapping
Function

P1 𝚽 (tentry) = ’client’

P2 𝚽(d1),𝚽(d3) = h1
𝚽(d2) = h3 𝚽(d4)
= h2

P3 𝚽 (t1) = h4

P4 𝚽(d6) = h3

P5 -----

P6 ------

P7 ------

P8 -----

P9 -----

P10 𝚽(d10) = h5

P11 𝚽(texit) = ‘client’

d1	 d2	

t1	

d3	 d4	

d6	

t5

t4	

t3	 t2	

d8	 d7	

d5

d9

d10	

tentry	

texit

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

 // release predecessor dataset resources, if possible

28. For each y∈ pred(x)

29. If there exists node ‘z’ such that y∈pred(z)
And Φ(x) = φ then

30. releasey = finishx ;

31. ASC(Φ(y)) = ASC(Φ(y)) - SIZE(y);

32. End If

33. End for

34. End while

35. End While

 // compute makespan – include datasets that need to
be transferred back to client

36. For each y∈ pred(exit node)

37. If releasey == null then //must be a data set

38. releasey = finishy + (SIZE(y) ×
DTR(Φ(y),‘client’));

//transferring to the client node may not be
needed for all nodes.

39. End if

40. End For

41. finishexitnode;= max (releasey): y∈ pred(exit node);

42. makespan(ω) = finishexitnode

43. return ω and makespan(ω)

44. END

	
(for example, percentage change in average
makespan) at the end of each iteration. In each
iteration, three tasks are performed.First, a fixed
number of execution plans with the shortest
makespans are selected to be carried over to the next
generation. Then we randomly cross-over pairs of
execution plans to generate new valid plans. Finally,
we modify plans from the previous step by controlled
mutations that result in valid plans only. The new
population is then formed by the union of carried
over plans and genetically modified plan. In the end
the execution plan with the shortest makespan is
returned.

To apply the mentioned constraints of section 3
we assign a very large makespan value to the
execution plan which do not meet the constraints. In
this way, those invalid execution plans have a very
low chance to be selected for the next generations.

5.	 EXPERIMENTS	 	

The two proposed workflow execution planning
strategies have been simulated in a cloud computing
environment on Wayne State University’s high
performance Grid network. The simulation used
eight

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

grid nodes and compared the two algorithms by
simulating five synthetic workflow applications
based on five real data-centric workflows: Montage,
CyberShake, Epigenomics, LIGO and SIPHT
(Bharathi et al., 2008) as well as some asymmetrical
workflows that are generated randomly. These
workflow applications are represented in Figure 3
and were developed through the Pegasus workflow
management system for different research domains
like bioinformatics and astronomy. Based on our
experiments, we observed that our results shown in
Table 2 are WEP-B settings that we received the
optimal solutions.

For these experiments each of the selected
workflows was run 200 times with different
parameters as shown in Table 3. They were also
compared with a K-means based (WEP-K) and a
random solution generator WEP-R. In addition, we
evaluated the performance of WEP-B performance
with 20% of fixed-location datasets.

Table 2. The optimal settings for WEB-B algorithm.	
Overall dataset and virtual machine

Algorithm 2. WEP-B: Execution Planning by
Evolutionary Optimization
Input:
 W: Workflow Graph;
 Ω(H, TYPE, ASC, ACC, DTR, CR): Workflow Execution
environment,
 population_size: size of population,
 elitism_rate: rate of elitism,
 mutation_rate: rate of mutation,
 num_iterations: number of iterations

Output:
Execution Plan ω and its makespan

1. BEGIN

num_elite ← population_size × elitism_rate;

num_crossover ← (population_size – num_elite)/2;

num_mutation ← population_size × mutation_rate;

Populatio← ; Populationnew← { }; Populationtemp← { };

2. For i = 1 to population_size do

3. Generate a new random mapping, Φ, which
produces a

 valid execution plan , ω ≡ (Φ, Γ);
4. 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 � {<

 ω,𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ω >} ;
5. End For

6. For i=1 to num_iterations do

7. Populationnew ← add top num_elite execution plans
from Population in the ascending order of makespan;

8. For j=1 to num_crossover do

9. Select randomly a pair of execution plans say ω A
and ω B from Population;

10. Generate valid execution plans ω C and ω D by an
appropriate one-point crossover of
 mapping functions in ω A and ω B ;

11. Populationtemp ← Populationtemp � {< ω C ,
Makespan (ω C)>, < ω D , Makespan (ω D)>};

12. End for

13. For j=1 to num_mutation do

14. select a new execution plan, ω A, randomly from
Populationtemp ;

15. mutate the mapping function in ω A to generate a
new execution plan, ω B ;

16. Replace < ω A , Makespan (ω A)> in
Populationtemp by < ω B , Makespan (ω B)>

17. End for

18. Populatin← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"#∪ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"#$;

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"# ← ; 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"#$ ← ;

19. End for

20. return the execution plan ω in Population with
the shortest makespan;

21. END

Figure 3: The structure of five realistic data-centric
workflows [Bharathi et al., 2008] as well as
asymmetrical sample workflow

	
CyberShake	

LIGO

	
Montage	

SIPHT	

	 	
Epigenomics	

	

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

Table 2. The optimal settings for WEB-B algorithm.	
Overall dataset and virtual machine

Maximum population size
Initial population

Maximum generation
Crossover probability
Mutation probability

100
Randomly generation

100
0.75-0.95

0.1-0.3

Figure 4 shows the workflow makespans
produced by varying the number of hosts and fixing
the number of workflow nodes. The size of the
workflow makespans are increased by increasing the
number of workflow nodes in all three strategies. As
expected, the WEP-A, WEP-B and WEP-K strategies
generate execution plans with shorter makespans on
average than the WEP-R strategy. Furthermore, the
gap increases as the number of hosts increases. This
is because a random strategy may spread out the
workflow and thereby introduce dataset transfer
delays. Algorithm WEP-B seems to perform better
than WEP-A and WEP-K. This can be explained by
the simpler structure of workflows. As the
complexity and size of workflow graph increases, it
is expected that WEP-B is likely to perform
substantially better than WEP-A and WEP-K. It can
also be noticed that, WEP-A, WEP-B and WEP-K’s
performances flatten out where the excess availability
of additional hosts no longer impacts the makespans
anymore.

 Figure 5 shows similar results of experiments in
which the number of hosts are fixed whereas the
number of nodes in the workflow graph can vary. In
a third set of experiments (shown in Figure 6), the
locations of the varying percentages of the datasets
are fixed, by fixing the locations of datasets,
workflow makespans show an increase for the WEP-
A, WEP-B and WEP-K algorithms whereas there is
almost no change for the WEP-R strategy. This
behavior is attributed to the fact that by fixing the
locations of datasets, there is less freedom to reduce
the makespans by reallocating datasets.

6.	 RELATED	 WORK	 	
Cultural Algorithms (CA) is a branch of

evolutionary computation inspired from social

evolution. It is composed of a knowledge component
called belief space as well as
the population component. CA have been
successfully applied to various single or multi-
objective optimization problems (Reynolds 1999,
Jayyousi and Reynolds 2014). Previous research
work in the context of distributed computing
environments has been mainly focused on the
performance modeling and allocation. Due to the
emergence of e-science and big data workflows, it
has become important to consider the costs of dataset
allocation and movement while developing an
execution plan for a big data workflow. This is even
more crucial when a big data workflow is executed in
a distributed environment that involves multiple and
heterogeneous data centers. Kosar et al., (2005a,
2005b) proposed an allocation framework for
distributed computing systems which considered the
data placement subsystem as an independent module
along with the computation subsystem. In their
proposed model, both data placement and task
computation jobs can be queued, scheduled,
monitored, managed and even check pointed.
Kayyoor et al., (2013) modelled the data placement
and replication strategies for the distributed
environments. They stated that minimizing query
latencies is not a critical issue in many analytical
workload scenarios. So they tried to minimize the
average number of computational nodes deployed for
the workflow by grouping the most interdependent
data together based on their occurrences of their
common query accesses. Chervenak et al., (2007)
explored the advantages of separating data placement
services from workflow management systems. By
applying an autonomous data placement service
along with a data replication service, they
demonstrated the benefits of pre-staging data when
compared to the data stage in and out strategies of the
Pegasus workflow management system. Lin and Lu
(2011) proposed an algorithm for mapping a data-
centric workflow application into a cloud execution
environment where resources can be dynamically
acquired using the elastic services of the cloud.

 In Çatalyürek et al., (2011) workflows were
modeled as hypergraphs and a hypergraph
partitioning technique, k-way partitioning, was
proposed to minimize the cut size. In that way, they
were able to cluster the workflow tasks along with
their required data in the same execution site. Yuan et
al., (2010) applied a heuristic binary clustering
algorithm to pre-cluster datasets and greedily
assigned workflow tasks to an execution site which
contained the most input datasets for that workflow.
Although their approach placed the most
interdependent data sets together and can reduce data
movement, it did not work as well with clusters

Table 3. Description of dataset and hosts of our experiment.
Overall workflow nodes and hosts

of nodes
(datasets and tasks)

[50,200,750,3000]

Dataset size [1TB – 100TB]
Task computation [10Hz – 103Hz]

of hosts
(datasets and tasks)

[5,10,25,50,100]

Data transmission rate [0.1MBps – 3.0MBps]
Data host storage capacity [200TB – 1PB]
Task host computation rate [103Hz – 106Hz]

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

of different sizes and different densities. The other
related work is Er-Dun et al., (2012) where they

applied Genetic	 Algorithm to heuristically produce

	

their data allocation solution along with incorporating
load balancing as part of optimization criterion. Their

model reduced data movement but workflow task
allocation was not considered.

 This paper extends the BDAP work of

Figure 6. Workflow makespans by varying the percentages of fixed-location datasets for fixed-size of workflows with 1000

nodes and 50 hosts.

Figure 4. Workflow makespans by varying the number of hosts

Figure 5. Workflow makespans by varying the number of workflow nodes

	

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

Ebrahimi et al., (2015) through the incorporation of
the following new to the model:

1. The workflow makespan minimization
problem was formulated in terms of a big data
environment and workflow. This was not addressed
in the BDAP paper.

2. Two new allocation strategies, WEP-A and
WEP-B, were added to the extended BDAP model.
While BDAP focused on minimizing data movement
during workflow execution, WEP-A and WEP-B
focused on the minimization of the workflow
makespans.

3. A series of extensive experiments were
employed to study the performance of WEP-A and
WEP-B in comparison to WEP-R (a random solution)
using five real-world workflows.

7.	 CONCLUSIONS	 	

 In a workflow that involves big datasets, either
as inputs or intermediate outputs, its makespan can
vary greatly depending on how the tasks and datasets
are allocated in a distributed computing environment.
This paper provided a formal definition of the
makespan minimization problem for big data
workflows, and proposed two efficient workflow
execution planning strategies. In particular, two
algorithms WEP-A and WEP-B were proposed. Each
followed a different allocation strategy. WEP-A
followed a phased approach to generate an execution
plan whereas WEP-B used an evolutionary
optimization strategy to find a valid plan with the
shortest makespan. Both of these strategies were
evaluated and compared through extensive simulation
experiments by varying workflow graphs and
resources in the workflow environment. Our
experiments demonstrated that WEP-B performed
better than WEP-A and WEP-K. In more complex and
larger scaled workflows, the improvements due to
evolutionary optimization in WEP-B were likely to be
become even more pronounced.

 For future work, we plan to improve our WEP-
B strategy by applying more efficient algorithm like
Cultural Algorithm or differential evolution. In
addition, we plan to consider not only workflow
execution time but also execution cost. In addition,
we plan to create real workflows and do more real
experiments.

8.	 ACKNOWLEDGMENT	 	

The authors thank Dr. Satyendra Rana for
technical assistance and ideas in preparing the paper.
This work is supported by National Science
Foundation, under grants NSF ACI-1443069. This
material is based upon work supported in part by the
National Science Foundation under Grant No.
0910812.

9.	 REFERENCES	

Bharathi, S., Chervenak, A., Deelman, E., Mehta, G.,
Su, M.H. and Vahi, K. (2008). “Characterization of
scientific workflows.” In Proceedings of the 3rd
Workshop on Workflows in Support of Large-Scale
Science (WORKS), pp. 1-10.

Çatalyürek, Ü. V., Kaya, K., and Uçar, B. (2011).
“Integrated Data Placement and Task Assignment for
Scientific Workflows in Clouds.” In Proceedings of
the 4th international workshop on Data-intensive
distributed computing, pp. 45-54.

Chebotko, A., Lin, C., Fei, X., Lai, Z., Lu, S., Hua, J.,
Fotouhi, F. (2007). “VIEW: A Visual Scientific
Workflow Management System.” In Proceedings of
the IEEE international Workshop Scientific
Workflows, pp. 207-208.

Chervenak, A., Deelman, E., Livny, M., Su, M. H.,
Schuler, R., Bharathi, S., Mehta, G. and Vahi, K.
(2007). “Data Placement for Scientific Applications
in Distributed Environments.” In Proceedings of the
8th IEEE/ACM International Conference on Grid
Computing, pp. 267-274.

Deelman, E. and Chervenak, A. (2008). “Data
Management Challenges of Data-Intensive Scientific
Workflows.” In Proceedings of 8th IEEE
International Symposium on Cluster Computing and
the Grid (CCGRID), pp. 687-692.

Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G. B.,
Good, J., Laity, A., Jacob, J. C. and Katz, D. S.
(2005). “Pegasus: A Framework for Mapping
Complex Scientific Workflows onto Distributed
Systems.” Scientific Programming, vol. 13, iss. 3, pp.
219-237.

Ebrahimi, M., Mohan, A., Kashlev, A., and Lu, S.
(2015). “BDAP: A Big Data Placement Strategy for

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

Cloud-Based Scientific Workflows.” In	 Proceedings	
of	 the	 1st	 IEEE International Conference on Big Data
Computing Service and Applications
(BigDataService), pp. 105-114.

Er-Dun, Z., Xing-Xing, X. and Yi, C. (2012). “A
Data Placement Strategy Based on Genetic
Algorithm for Scientific Workflows.” In Proceedings
of the 8th International Conference on Computational
Intelligence and Security (CIS), pp. 146-149.

Freire, J., Silva, C. T., Callahan, S. P., Santos, E.,
Scheidegger, C. E. and Vo, H. T. (2006). “Managing
Rapidly-Evolving Scientific Workflows.”
In Provenance and Annotation of Data. Springer
Berlin Heidelberg, pp. 10-18.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C.,
Pocock, M. R., Li, P. and Oinn, T. (2006). “Taverna:
A Tool for Building and Running Workflows of
Services.” Nucleic Acids Research, vol. 34, iss. Web
Server issue, pp. 729-732.

Jayyousi, T., Reynolds, R.G. (2014) "Extracting
Urban Occupational Plans Using Cultural
Algorithms." In Proceedings of the IEEE
Computational Intelligence Magazine, Vol. 9, No. 3,
pp. 66-87.

Juve, G. and Deelman, E. (2010). “Scientific
workflows and clouds.” Crossroads, vol. 16, no. 3,
pp. 14-18.

Kashlev, A. and Lu, S. (2014). “A System
Architecture for Running Big Data Workflows in the
Cloud.” In Proceedings of the IEEE International
Conference on Services Computing (SCC), pp.51-58.

Kayyoor, A. K., K., Deshpande, A. and Khuller, S.
(2013) “Data Placement and Replica Selection for
Improving Co-location in Distributed Environments.”
CoRR abs/1302.4168.

Kosar, T., Son, S., Kola, G. and Livny, M. (2005a).
“Data Placement in Widely Distributed
Environments.” Advances in Parallel Computing 14,
pp. 105-128.

Kosar, T. and Livny, M. (2005b). “A Framework for
Reliable and Efficient Data Placement in Distributed

Computing Systems.” Journal of Parallel and
Distributed Computing (JPDC), vol. 65 no. 10,
pp.1146-1157.

Lim, C., Lu, S., Chebotko, A., Fotouhi, F. (2010).
“Prospective and Retrospective Provenance
Collection in Scientific Workflow Environments.” In
Proceedings of the IEEE International Services
Computing (SCC), pp. 449-456

Lin, C. and Lu, S. (2011). “SCPOR: An Elastic
Workflow Scheduling Algorithm for Services
Computing.” In Proceedings of the International
Conference on Service-Oriented Computing and
Applications (SOCA), pp. 1-8.

Lu, S., and Zhang, J. (2009). “Collaborative
Scientific Workflows.” Web Services, ICWS. IEEE
International Conference on, pp. 527-534

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D.,
Jaeger, E., Jones, M., Lee, E., Tao, J. and Zhao, Y.
(2005). “Scientific Workflow Management and the
Kepler System.” Concurrency and Computation.
Practice and Experience, Special Issue: Workflow in
Grid Systems, vol. 18, iss. 10, pp. 1039–1065.

Reynolds, R.G. (1999) “An Overview of Cultural
Algorithms.” New Ideas in Optimization, D. Corne,
F. Glover, and M. Dorigo Ed., McGraw Hill Press,
pp. 367-378.

Yuan, D., Yang, Y., Liu, X. and Chen, J. (2010). “A
Data Placement Strategy in Scientific Cloud
Workflows”. Future Generation Computing Systems,
vol. 26, no. 8, pp. 1200-1214.

Zhao, Y., Hategan, M., Clifford, B., Foster, I., Von
Laszewski, G., Raicu, I., Praun, T. S. and Wilde, M.
(2007). “Swift: Fast, Reliable, Loosely Coupled
Parallel Computation.” In Proceedings of the IEEE
International Workshop on Scientific Workflows, pp.
199-206.

Authors	
Mahdi Ebrahimi is a PhD
candidate in the Department
of Computer Science, Wayne
State University. His research

International Journal of Big Data (ISSN 2326-442X) Vol. X, No. Y, Month Year	 	

interests include Big Data, Big Data Workflows, Big
Data Placement, Big Data Workflow Scheduling and
NoSQL Databases. He has published several research
articles in peer-reviewed international conferences,
including IEEE conference on Big Data and Big Data
Service. He is a member of IEEE and ACM.

Aravind Mohan is a PhD
candidate in the Department
of Computer Science, Wayne
State University. His research
interests include Big Data
Management, NoSQL
Databases, Cloud Computing
and Services Computing. He
has published several

research articles in peer-reviewed international
conferences, including IEEE conference on services
computing, big data, big data computing services and
applications and the ACM SIGIR conference. He is a
member of IEEE and ACM.

Andrey Kashlev is a PhD
candidate in the Department
of Computer Science, Wayne
State University. His research
interests include Big Data,
NoSQL Databases, Cloud
Computing, and Services
Computing. He has published

several papers in peer-reviewed international journals
and conferences, including Data and Knowledge
Engineering, International Journal of Computers and
Their Applications and the International Conference
on Services Computing. He is a member of IEEE.

Shiyong Lu is an associate
professor in the Department
of Computer Science,
Wayne State University,
and the director of the Big
Data Research Laboratory.
Dr. Lu received his Ph.D.
in computer science from

Stony Brook University in 2002. Dr. Lu's current
research interests focus on big data workflows, big
data modeling, and provenance management. Dr. Lu
is an author of two books and over 120 articles
published in various international journals and
conferences, including IEEE Transactions on
Services Computing (TSC), Data and Knowledge
Engineering (DKE), IEEE Transactions on
Knowledge and Data Engineering (TKDE). He is the

founding chair of the IEEE International Workshop
on Scientific Workflows (SWF) and a Co-Editor-in-
Chief of the International Journal of Cloud
Computing and Services Science. He is a founding
editorial board member of International Journal of
Big Data and a senior member of the IEEE.

Dr. Robert G. Reynolds
received his Ph.D. degree
in Computer Science,
specializing in Artificial
Intelligence from the
University of Michigan,
Ann Arbor. He is
currently a professor of

Computer Science and director of the Artificial
Intelligence Laboratory at Wayne State University.
He is also an Adjunct Associate Research Scientist
with the Museum of Anthropology at the University
of Michigan-Ann Arbor. His interests are in the
development of computational models of cultural
evolution for use in the simulation of complex
organizations and in computer gaming applications.
Dr. Reynolds produced a framework, Cultural
Algorithms, which is a data intensive evolutionary
search algorithm based upon principles of social and
cultural evolution. He has applied this approach to
solving data intensive problems and has received
funding from both government and industry to
support his work. He has published over 250 papers
on the evolution of social intelligence in journals,
book chapters, and conference proceedings. He is
currently an associate editor for the IEEE
Transactions on Artificial Intelligence in Games, and
IEEE Transactions on Evolutionary Computation. Dr.
Reynolds is a senior member of the IEEE and a
member of the ACM.

