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ABSTRACT	  

The	   makespan	   of	   a	   big	   data	   workflow	   is	   the	   time	   elapsed	   between	   the	   start	   of	   the	   first	   task	   and	   the	  
completion	  of	   the	   last	   task	   in	   the	  workflow.	  This	   time	   includes	   the	  delivery	  of	   the	   final	  data	  product	   to	   the	  
desired	  location	  within	  the	  network.	  Due	  to	  the	  large	  number	  of	  inputs	  and	  intermediate	  outputs	  of	  a	  big	  data	  
workflow	  activity,	  the	  makespan	  of	  the	  workflow	  is	  significantly	  influenced	  by	  how	  its	  tasks	  and	  datasets	  are	  
allocated	  in	  a	  distributed	  computing	  environment.	  Therefore,	  reducing	  makespans	  of	  big	  data	  workflows	  can	  
be	  achieved	  by	  incorporating	  a	  data	  and	  task	  allocation	  strategy	  into	  the	  execution	  planning	  phase	  performed	  
by	  a	  workflow	  management	  system.	  This	  creates	  a	  pressing	  need	  for	  an	   investigation	  of	  such	  strategies.	  To	  
address	  this	  need,	  this	  paper	  provides	  a	  formal	  definition	  of	  the	  makespan	  minimization	  problem	  for	  big	  data	  
workflows	   and	   proposes	   efficient	   workflow	   execution	   planning	   strategies.	   In	   particular,	   two	   algorithms,	  
WEP-‐A	   and	  WEP-‐B,	   following	   different	   strategies	   are	   proposed.	  WEP-‐A	   follows	   a	   phased	   approach	   to	   the	  
generation	  of	  an	  execution	  plan	  whereas	  WEP-‐B	  uses	  an	  evolutionary	  algorithm-‐based	  optimization	  strategy	  
to	   find	   a	   valid	   plan	  with	   the	   shortest	  makespan.	   Both	   of	   these	   strategies	   are	   evaluated	   through	   extensive	  
simulation	  experiments	  by	  varying	  workflow	  graphs	  and	  resources	  in	  the	  workflow	  environment.	  The	  results	  
of	   the	  experiments	  demonstrate	   that	  WEP-‐B	  performs	  better	   than	  WEP-‐A	  on	  a	  set	  of	  benchmark	  examples.	  
For	  more	   complex	  and	   large	  workflows,	   the	   improvements	  due	   to	  evolutionary	  optimization	   in	  WEP-‐B	  are	  
likely	  to	  be	  even	  more	  dominant.	  
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1.	  INTRODUCTION	  

 

Complex scientific computations are often 
modeled as workflows. Among other benefits, 
decomposing a complex application into a workflow 
simplifies the design effort, enables the reuse of 
computational modules, and allows their parallel and 
pipelined execution. The concept of workflow 
applications is used widely in scientific research in a 
variety of domains such as bioinformatics, physics, 
astronomy, ecology and earthquake science (Lu and 
Zhang, 2009, Lim et al., 2010, Juve and Deelman, 

2010).  Given the computing, storage and networking 
technologies, coupled with the increased capacity to 
perform collaborative scientific research, there is an 
increased need to produce efficient scientific 
workflows. 

 A data-centric workflow management system 
(DWFMS) is a platform designed to support two key 
functions: 1) the design and specification of 
workflows using a visual drag and drop interface; and 
2) the configuration, execution and monitoring of 
workflow runs. Examples of representative DWFMS 
systems include Taverna (Hull et al., 2006), Kepler 
(Ludäscher et al., 2005), VisTrails (Freire, et al., 
2006), Pegasus (Deelman et al., 2005), Swift (Zhao et 
al., 2007), and DATAVIEW (Kashlev and Lu, 2014, 
Chebotko et al., 2007). Traditionally, these systems 
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use a directed acyclic graph (DAG) abstraction to 
model a workflow, where each vertex of the graph 
represents a workflow task, and each directed edge 
between two vertices depicts the dataflow between 
them.  

In order to meet the demands of big data 
workflows, the design interface and DAG abstraction 
must be expanded to explicitly model both data-
centric and computational activities. The execution 
module must also be modified in order to include 
execution planning and preparation functions to 
decide, allocate and move data sets and tasks to their 
respective hosts in the target distributed computing 
environment. The determination of an efficient 
execution plan is a non-trivial exercise when the 
workflow involves big data sets and hundreds or 
thousands of complex tasks (Bharathi et. al., 2008, 
Deelman and Chervenak, 2008). 

This paper contributes toward the enhancement of 
existing DWFMSs in the area of execution planning 
of big data workflows. Workflow execution planning 
is directed by the strategy adopted for the allocation 
of data and workflow tasks. The strategies proposed 
here seek to minimize the total execution time (a.k.a. 
makespan) of the workflow. Makespan is defined as 
the time that elapsed between the start of the first task 
and the completion of the last task in the workflow, 
including the delivery of final data products to a 
desired place. A big data workflow involves big 
datasets, either as inputs or intermediate outputs. 
Therefore, the makespan can vary greatly depending 
on how the tasks and datasets are allocated in the 
distributed computing environment. The utilization of 
a data and task allocation strategy that minimizes the 
makespan of a big data workflow can deliver 
significant benefits to users in getting their results in 
time.  

The remainder of the paper is organized as 
follows.  Section 2 describes the characteristics, and 
assumptions of the workflow execution environment 
needed to support such a model. An extended 
graphical model of big data workflows and the 
concept of execution plans are presented in section 3. 
In Section 4, a formal definition of the makespan 
minimization problem of big data workflows is 
provided. Two efficient algorithms are proposed to 
solve it. In Section 5, the proposed algorithms   are 
compared with a random allocation strategy using 
extensive simulation runs. A brief overview of 
related work appears in Section 6. The paper 
concludes in Section 7 with a summary of the key 
contributions of the paper. 

2.	  BIG	  DATA	  WORKFLOW	  
EXECUTION	  ENVIRONMENT	  

An execution environment for a big data 
workflow is comprised of geographically distributed 
autonomous sites spread around the globe. In this 
paper, these sites are defined as ‘hosting’ sites, or 
simply as ‘hosts’. The hosts may be heterogeneous in 
various ways, but all have the capability to provide 
data hosting service and/or compute (task execution) 
services.  

Hosts can be classified into three basic types: a 
data host; a task host; and a hybrid host. A “data 
host” provides only data hosting services. It will act 
on data storage and data transfer requests, but cannot 
be used to perform arbitrary workflow tasks. A “task 
host” can be used to run workflow tasks, but cannot 
be used for (durable) data hosting. It is able to 
provide enough temporary scratch storage for all 
input and output data sets that relate to the execution 
of allocated tasks. A “hybrid host” is capable of 
providing data hosting services as well as compute 
services. 

 For a collection of ‘hosts’ to serve as an 
execution environment for a particular big data 
workflow, there must be a communication capability 
to stream big data sets from each host to all  other 
hosts in the collection. Furthermore, there must be an 
agreement that allows such streaming to take place at 
a predicted level of service and time. In addition ‘task 
hosts’ must be available to run workflow tasks on 
demand, as dictated by the workflow management 
system.  

The notion of ‘host’ is a generic abstraction for 
packaging storage and computing capacity and does 
not imply a specific underlying architecture or 
business model. Notable examples of ‘hosts’ include 
public clouds, private clouds, HPC data centers, and 
Grid nodes. Here it is assumed that the internal 
architectures of the ‘host’ implementations will 
provide data and computing services with predictable 
SLA’s in terms of data transfer rates and processing 
speeds.  

The first step in the production of a mathematical 
formulation of the makespan minimization problem 
is to characterize the properties of a “host”.  The 
three basic properties of a “host” in the model are  

• Available Storage Capacity – This attribute is 
relevant to hosts of type ‘data’ or ‘hybrid’. The 
‘Available Storage Capacity’ refers to the capacity 
available for the execution of a particular workflow 
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and does not reflect the total storage capacity of the 
host in question. The available storage capacity may 
be less than the total capacity as a result of a sharing 
policy or another service agreement.  An elastic 
storage service provided by the host may allow 
available storage capacity to be changed. However, it 
is assumed in the model that such changes occur prior 
to and outside the execution planning of a particular 
workflow run. Thus, for the purpose of this 
formulation, available storage capacity of a ‘host’ is 
fixed and is specified using the same units, such as 
megabytes for each host.  

• Available Data Transfer Bandwidth – This 
attribute allows the prediction of the time required to 
transfer a dataset from one ‘host’ to another. The 
available data transfer bandwidth may be limited by 
the connectivity of the host, and/or by a service level 
agreement.  

• Available Compute Capacity – This attribute is 
applicable to hosts of  type ‘task’ or ‘hybrid’ and 
allows the prediction of the processing time of a 
workflow task as well as  the number of workflow 
tasks that can be executed in parallel on the host 
without impacting individual task execution times. 
As with storage capacity, compute capacity can be 
constrained by policy or service level agreements. 

Note that the above three attributes are not fixed 
or static for a host at all times. These are considered 
to be established priori prior negotiations and remain 
unchanged during the execution planning and 
subsequent execution of an individual workflow.  

For workflow execution planning purposes, it is 
assumed that all of the hosts in the workflow 
environment are fully reliable and available. The 
responsibility of ensuring these characteristics lies 
with individual hosts and is covered by their SLA’s. 
The impact of the recovery and high-availability 
mechanisms is reflected in the expected processing 
times of tasks and expected data transfer rates 
associated with the host.  

3.	  FORMULATION	  OF	  WORKFLOW	  
EXECUTION	  PLANNING	  

 To formalize the workflow execution planning 
problem, formal descriptions of the following are 
needed: 

• Big Data Workflow Execution Environment 

• Big Data Workflows 

• Big Data Workflow Execution Plan 

Table 1 summarizes all the symbols and notations 
used in the following definitions. 

Definition 1: (Big Data Workflow Execution 
Environment) - A big data workflow execution 
environment Ω is defined as a 6-tuple  Ω ≡ {H, 
TYPE, ASC, ACC, DTR, CR}; where for all h∈, 
ASC(h) = 0 if TYPE(h) = ‘task’ and ACC(h) = 0 if 
TYPE(h) = ‘data’.  In terms of the big data execution 
environment defined above, big data workflow 
represented as a directed acyclic multipartite graph as 
given below.  

Definition 2: (Big Data Workflow) –	  A big data 
workflow, W, is represented as a directed acyclic 
graph as a 3-tuple, Ⱳ≡(V, E, SIZE), where the set of 
nodes, V, satisfy the following properties: 

• There are two special nodes called entry and 
exit nodes of type ‘task’. 

• For each dataset referenced in the workflow 
there is a unique node ‘x’ in V where NODETYPE(x) 
=’data’ and vice versa.  

• For each task in the workflow there is a unique 
node ‘n’ in V where NODETYPE(n) =’task’ and vice 
versa.  

The set of edges, E, satisfy the following 
properties: 

• There is no edge exy∈E where x = y, i.e., there 
is no edge or self-loop from a node to itself. 

• There is no edge exy∈E, such that if ‘y’ is the 
entry node, there is no incoming edge to the 
entry node. 

• There is no edge exy∈E, such that if ‘x’ is the 
exit node, there is no outgoing edge from the 
exit node. 

• There is no edge exy∈E where NODETYPE(x) 
= NODETYPE(y). That is, there is no edge 
between nodes of identical type. 

• For each node y in V, there is exactly one edge 
exy∈E if NODETYPE(y) = ‘data’. That is, 
there is exactly one incoming edge to a 
datanode. 

• For each node y in V, where ‘y’ represents a 
pre-existing dataset (input to the workflow), there 
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is exactly one edge exy∈E where ‘x’ is the entry 
node.   

Table 1:  Notations Summary  
 Notation Description 
Ω  Workflow Execution Environment 
H Set of hosts in Ω . 
M Total number of hosts in H. 
hk kth host in H; 1 ≤ k  ≤  m. 
TYPE A function mapping hosts to unique types;                                                                                        

TYPE: H → (‘data’, ‘task’, ‘hybrid’).                                                                                        
ASC A function mapping hosts to their 

available storage capacities.                                                          
ASC: H → I, where I is the set of non-
negative integers.                                                               

ACC A function mapping hosts to their 
available compute capacities.                                                        
ACC: H → I, where I is the set of non-
negative integers.                                                              

DTR A function mapping a pair of hosts to data 
transfer rates between them.                                           
DTR: H × H→ R, where R is the set of 
non-negative real numbers.                                                

CR Compute Rate Function giving compute 
rate for each host                                                                                                                  
CR: H → R, where R is the set of non-
negative real numbers.                                                

Ⱳ Scientific Workflow Graph 
V Set of nodes in Ⱳ. 
NODETYPE A function mapping nodes to node types as 

“Data’ or ‘Task’.                                                                                         
NODETYPE: V → {‘Data’, ‘Task’} 

Ᵽ An ordered partitioning of V into disjoint 
sets called partitions where nodes in a 
partition are of identical type. 

|Ᵽ| Number of partitions in Ᵽ. 
Pi ith partition in Ᵽ. 
E Set of directed edges in Ⱳ.  
exy Directed edge from node ‘x’ to node ‘y’ in 

V. 
SIZE A function mapping nodes to numbers.                                                                                         

SIZE: V → I, where I is the set of non-
negative integers. 

pred(x) pred(x): {y| y ∈ V, where there exists an 
edge eyx ∈ V}. 

Ω A workflow execution plan for a given 
workflow graph Ⱳ and the workflow 
execution environment Ω . 

Φ  Mapping of nodes in Ⱳ to hosts H in Ω . 
Γ  A scheduling function that computes the 

scheduled start time, the scheduled 
completion time, and  thescheduled release 
time for each node  in  Ⱳ.                                                                                       
Γ: V → {Scheduled Start Time, Scheduled 
Completion Time, Scheduled Release 
Time } 

startx(Γ) Scheduled start time for node ‘x’ generated 
by the scheduling function Γ. 

finishx(Γ) Scheduled completion time for node ‘x’ 
generated by the scheduling function Γ. 

releasex(Γ) Scheduled release time for node ‘x’ 
generated by the scheduling function Γ. 

requires A function that computes the  maximum 
storage required for any host ‘h’ of type 
‘data’ or ‘hybrid’ at the same time during 
the execution plan ω.                                                                          

requireS:  H → ω Number of Storage Units 
require A function that computes the maximum 

number of  tasks assigned to any host ‘h’ 
of type ‘task’ or ‘Hybrid’ at the same time  
during the execution plan ω.                                                                          
requireC:  H → ω Number of Compute 
Tasks to be executed in parallel  

restrictedHosts List of hosts where a node ‘x’ is restricted 
for mapping by policy.                                                                                                            
restrictedHosts: V → {set of  hosts} 

transfer(x, y) Data transfer time between nodes ‘x’ and 
‘y’ which varies depending upon the 
mapping of nodes to hosts. 

The SIZE function satisfies the following 
properties: 

• SIZE(x) = 0, if ‘x’ is the entry or exit node. 

• For any ‘x’∈V, if NODETYPE(x) = ’data’, 
then SIZE(x) represents the size of the corresponding 
dataset in units of data storage /transfer. 

• For any ‘x’∈V, if NODETYPE(x) = ’task’, 
then SIZE(x) represents the compute cycles required 
for the execution of the corresponding task. 

A dataset node corresponds to a unique dataset in 
the workflow and represents the data-centric activity 
for the transfer of the dataset from one host to 
another. The dataset is treated as an atomic unit for 
the purpose of storage and data transfer. A task node 
corresponds to a compute-intensive activity in the 
workflow. A workflow activity that is both data and 
compute centric can be modeled by a task node 
preceded and succeeded by data node. Therefore in 
model, the terms dataset (task) and dataset (task) 
node interchangeably. 

We include an edge from the entry task node to 
each of the input dataset nodes, as if these were all 
produced as outputs of the entry task. The entry task 
is a pseudo task with a zero processing time and is 
introduced to model the start of the workflow. 
Likewise, an exit task node also represents a pseudo 
task with zero processing time that models workflow 
termination.  

3.1	  MULTIPARTITE	  NATURE	  OF	  THE	  WORKFLOW	  	  
A big data workflow Ⱳ as described in the 

preceding section has a multipartite structure 
revealed by the partitioning Ᵽ as follows: 

• Ᵽ ≡ {Pi}; 1 ≤ i ≤m; where m is the total number 
of ordered partitions and Pi denotes the ith partition. 

• For each pair of partitions Pi and Pj in Ᵽ, Pi∩Pj 
= φ, i.e., the partitions are disjoint. 
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• Each node in V belongs to exactly one partition 
in Ᵽ.  

• For any pair of nodes ‘x’ and ‘y’ in any 
partition Pi; 1 ≤ i ≤ m, NODETYPE(x) = 
NODETYPE(y), i.e., all nodes in a partition are of 
the same type and there is no edge between nodes in 
the same partition. 

The partitions are indexed in order as follows: 

• The first partition P1 contains the entry node 
only. 

• The last partition Pm contains the exit node 
only. 

• There is no edge in E from a node in Pj to a 
node in Pi; 1 ≤ i < j ≤ m. 

• For each node ‘x’ in any partition Pi; 1< i ≤ m, 
there is at least one edge from a node in partition Pi-1. 
This condition implies that each node is placed in the 
lowest possible numbered partition. 

The definition order of partitions in Ᵽ implies the 
following properties: 

Property 1: The number of partitions, |Ᵽ|, is a 
finite odd number. 

Property 2: Even numbered partitions contain 
only dataset nodes and odd numbered partitions 
contain only task nodes. 

Property 3: There are no edges from a node in an 
even (odd) numbered partition to nodes in an even 
(odd) numbered partition. 

Property 4: For each node in all even numbered 
partitions (a partition comprising of dataset nodes), 
there is exactly one incoming edge and one or more 
outgoing edges. 

Property 5: For each node in all odd numbered 
partitions, there is at least one incoming edge (except 
the first partition) and at least one outgoing edge 
(except the last partition). The first partition has no 
incoming edge and the last partition has no outgoing 
edge. 

Property 6: For any pair of nodes ‘x’ and ‘y’ in 
V, if y∈pred(x) and ‘x’∈Pi and ‘y’∈Pj, then j < i. 

Definition 3: (Usage Scope of a Dataset). The 
Usage Scope of a dataset node ‘x’ is defined by an 
ordered pair of indices (i, j); 1< i <j ≤m where ‘x’∈ Pi 

and j is the highest index such that there is an edge 
from ‘x’ to a node in Pj.  

Understanding the usage scope of a dataset allows 
the release of storage occupied by it at the earliest 
possible time. If an intermediate dataset produced 
during a workflow run must be kept in storage for 
future runs or other workflows, the situation is 
represented by including an edge from the dataset 
node to the exit node.  

3.2	  PARALLEL	  EXECUTION	  OF	  TASKS	  IN	  THE	  
WORKFLOW	  
 To minimize the completion time of a workflow, 
one must execute workflow tasks in parallel as much 
as possible. Based upon the model of workflow 
presented so far, it is clear that the tasks belonging to 
the same partition can be executed in parallel 
provided that there is sufficient available compute 
capacity. The following equation gives the maximum 
possible degree of parallelism in a workflow: 

Maximum Possible Parallelism = max |Pi| (1 < i < 
m; i is odd); where |Pi| is the number of nodes in 
partition Pi.  

The actual parallelism may be restricted by 
available compute capacity or by design to minimize 
the delays due to dataset transfers. Thus, there is a 
tradeoff between exploiting parallelism and 
minimizing dataset transfers. Furthermore, these 
tradeoffs must follow the resource constraints of the 
workflow execution environment. Figure 1 shows a 
workflow graph.  

3.3	  WORKFLOW	  EXECUTION	  PLAN	  	  
 A workflow execution plan lays out the mapping 

of hosts to nodes in the workflow graph and the 
relative timings when a task/data transfer is 
scheduled to start and complete, and when the 
resources occupied by a node can be released. The 
relative timings in the plan depend on the processing 
and data transfer times which in turn depend on the 
mapping of hosts to nodes in the workflow graph. 

Definition	  4:	  (Big	  data	  Workflow	  Execution	  
Plan).	   A big data workflow execution plan is 
formally defined as a tuple ω ≡ (Φ, Γ), where 

• Φ is a mapping function such that for each node 
‘x’ in V, Φ(x) = ‘h’ where ‘h’∈H. 
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• Γ is a mapping function such that for each node 
‘x’ in V, Γ(x) = {startx, finishx, releasex}. All times 
are relative to the start time of entry node. Γ (entry 
node) = {0, 0, 0}. 

To calculate the makespan of an execution plan in 
partition-based approach we need to obtain maximum 
storage (requestS) and compute requirements 
(requestC) of a host at any point within an execution 
plan. Function 1 computes requestS and request of a 
host in any step of an execution plan.  

An execution plan must be valid in order to be 
realized in a workflow. For an execution plan to be 
valid, it must satisfy the following constraints: 

• Hosting Restrictions 
• Host Type Constraints 
• Storage Capacity Constraints	  
• Compute Capacity Constraints 
• Precedence Constraints 

These constraints are formally defined below. 

Constraint 1: (Hosting Restrictions) – The 
execution plan ω satisfies the restricted mapping 
constraint if and only if for each node ‘x’ in V, if 
Φ(x) = ‘h’ then ‘h’ ∉ restrictedHosts(x). A mapping 
policy may restrict a node to be mapped to certain 
hosts or the host for a given node is predetermined 
and fixed. For example, certain dataset in raw forms 
may not be allowed to cross national boundaries 
during the makespan process.  

Constraint 2: (Host Type Constraints) – The 
execution plan ω satisfies the host type constraint if 
and only if for each node ‘x’ in V, Φ(x) = ‘h’, then 
either NODETYPE(x) = ‘data’ and TYPE(h) ≠ ‘task’ 
or NODETYPE(x) =  ‘task’ and TYPE(h) ≠ ‘data’.  

Constraint 3: (Storage Capacity Constraints) – 
The execution plan ω satisfies the storage capacity 
constraint if and only if requestS(h) < ASC(h) for 
each host ‘h’ in H in the plan ω. Function 1 shows the 
procedureemployed to compute requestS(h). 

 

Figure 1. A data-centric workflow with five tasks, five input 
datasets, four intermediate datasets, and one output set. 



International Journal of Big Data (ISSN 2326-442X)                Vol. X, No. Y, Month Year	   	  

 

Constraint 4: (Compute Capacity Constraints) 
– The execution plan ω satisfies the compute capacity 
constraint if and only if requestC(h) < ACC(h) for 
each host ‘h’ in H in the plan ω. Function 1 shows the 
procedure to compute requestC(h). 

Constraint 5: (Precedence Constraints) – The 
execution plan ω satisfies the precedence constraint if 
and only if for each pair of nodes ‘x’ and ‘y’, if there 
is an edge from ‘x’ to ‘y’ in E then starty > finishx + 
transfer(x, y), and releasex > finishy where transfer(x, 
y) = (SIZE(x) + SIZE(y)) × DTR(Φ(x), Φ(y)). 

3.4.	   WORKFLOW	   EXECUTION	   PLANNING	  
PROBLEM	  

Definition 5: (Makespan of an Execution Plan) 
- Given an execution plan ω, the makespan of ω, 
makespan(ω), is the total execution time of the 
workflow. 

Definition 6: (Makespan Minimization 
Problem) – Given a workflow graph Ⱳ and the 
workflow execution environment Ω , a makespan 
minimization problem is formally defined as the 
problem of finding a workflow execution plan  ω 

optimal such that  1) ωoptimal is a valid execution plan, 
and 2) for all valid execution plans ω, 
makespan(ωoptimal) ≤ makespan(ω). 

4.	  SOLUTIONS	  FOR	  WORKFLOW	  
EXECUTION	  PLANNING	  

In this section two main solutions for finding 
heuristic solutions to the workflow execution 
problem formulated in section 3.4 are described. 
These solutions follow completely different 
approaches which are subsequently compared and 
evaluated by experiments. First approach is based on 
construction of execution plan one at a time in the 
ascending order. Algorithm 1, also called WEP-A, 
describes the solution based on the first approach. 
Second approach, called WEP-B is described in 
Algorithm 2 and is based on a meta-heuristic 
optimization technique. Figure 2 represents 
partitioned layout of the workflow shown in Figure 1. 

4.1	  ALGORITHM	  1:	  WEP-‐A	  
The WEP-A algorithm works on the input 

workflow laid out as a finite set of partitions. 
Workflow task nodes belong to odd numbered 
partitions and dataset nodes to even numbered 
partitions First	   WEP-‐A	   algorithm	   computes,	   for	  
each	   partition,	   the	   set	   of	   preferred,	   permissible	  

and	   other	   hosts	   for	   each	   workflow	   node	   host	  
(lines	  6-‐12). 

Function 1. Computing requestS and requestC for a 
host 
Input:  
       ω :        Execution Plan ω, host ‘h’∈H,  
       h∈H:    host 
Output: 
       maximum storage and compute requirements of host    h,  
requestS(h) and requestC(h) 
 

1. 

 

BEGIN 

2.    nodes = storageCounts = computeCounts = {};   // set   
of counts 

3.    counted = {};    // set of node 

4.    countS = countC = 0; 

5.    For each node ′𝑥′ ∈ H 

6.       If Φ(x) = ‘h’ then 

7.          nodes ← ‘h’;        // add ‘h’ to nodes 

8.      End If 

9.   End For 

10.   For each node ‘x’ ∈ node 

11.      If (‘x’ ∉ counted) then 

12.       counted ← ′𝑥′; 

13.       countS = SIZE(‘x’); 

14.       countC = 1; 

15.        For each node ‘y’ ∈ nodes and ‘y’ ≠’x’ 

16.           If  ((‘y’ ∉ counted) And (( startx ≤  starty ≤ 
releasex) Or ( starty ≤  startx ≤ releasey)))  

17.              countS = countS + SIZE(‘y’); 

18.              countC = countC + 1; 

19.              counted ← ′𝑦′; 

20.            End If 

21.        End For 

22.        storageCounts ←  countS; 

23.        computeCounts ←  countC; 

24.      End if 

25.      End For 

26.    requestS = max{storageCounts};         //maximum of 
all storage counts 

27.    requestC = max{computeCounts};      //maximum of 
all compute counts 

28.    return requestS(h), requestC(h); 

29. END 
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Figure 2: Workflow of Figure 1 shown as Ordered 
Partitions. 

A	   valid	   mapping	   of	   workflow	   nodes	   to	   the	  
available	   hosts	   is	   then	   computed	   next	   (lines	   13-‐
18).	  Following	   that,	   start	  and	   finish	   times	  of	  each	  
workflow	   nodes	   in	   the	   plan	   are	   calculated	   (lines	  
19-‐26).	  The	  unused	  datasets	  are	  released	  in	  order	  
to	  increase	  the	  storage	  capacity	  of	  the	  hosts	  (lines	  
27-‐31).	   Finally,	   the	   algorithm	   calculates	   the	  
makespan	  of	   the	  execution	  plan	  and	  returns	  both	  
an	   execution	   plan	   and	   its	   makespan	   as	   outputs	  
(lines	  35-‐43).	  

4.2	  ALGORITHM	  2:	  WEP-‐B	  	  
Algorithm	  WEP-‐B	   proceeds	   by	   generating	   an	  

initial	  population	  of	  valid	  execution	  plans.	  The	  size	  
of	   the	   population	   population_size	   is	   an	   input	  
parameter	  to	  the	  algorithm.	  Execution	  plans	  along	  
with	   their	   makespans	   are	   retained	   for	   the	   next	  
step.	   The	   algorithm	   is	   then	   iterated	   a	   number	   of	  
times	   as	   described	   by	   another	   input	   parameter	  
num_iterations.	  Alternatively,	  the	  algorithm	  can	  be	  
terminated	  by	  checking	  a	  convergence	  criterion	  	  

Algorithm 1.  WEP –A : Incremental Generation of 
Execution Plan by Partitions 
Input:  
   W(Ᵽ, E, SIZE):   Workflow graph where Ᵽ = {Pi}; 1 ≤ i ≤m,  
   Ω(H, TYPE, ASC, ACC, DTR, CR): Workflow Execution 
environment        
 
Output: 
       Execution Plan ω, Makespan(ω) 
 
1. BEGIN 

2.    finishentry node  = startentry node = releaseentry node = 0; 

3.    Φ(x) = ‘client’ if x is tentry or texit , otherwise Φ(x) = φ; 

4.    i = 2;  // P1 = tentry and Pm = texit 

5.  For each Pi (1<i < m) do 

6. sorted_node_list =  nodes in Pi sorted by descending 
order of SIZE; 

7.    While  sorted_node_list ≠ φ do 

8.       x = remove next node in sorted_node_list; 

9. If  Φ(x) ≠ φ then break; // this will be true for nodes        
with pre-existing fixed     allocation 

10.   permissible_hosts = {h: h ∈ H And h∉ 
restrictedHosts(x) And  
      (if NODETYPE(x) == ‘Data’ then (TYPE(h) ≠    
‘Task’  And  SIZE(x) ≤ ASC(h)) else  

         TYPE(h)  ≠ ‘Data’  And  SIZE(x) ≤ ACC(h)}; 

11. preferred _hosts = permissible_hosts ∩{Φ(y): y∈ 
pred(x)}; 

12.      other_hosts=permissible_hosts - preferred _hosts; 

   // find a valid mapping 

13    If preferred _hosts ≠ φ then 

14.       If (NODETYPE(x) ==’Data’) 

15.         Φ(x)=argmin! DTR(�(𝑦), ℎ  ) for all h∈preferred 
_hosts 

16.      Else 

17.          Φ(x)= argmin! CR(ℎ) for all h∈preferred _hosts       

18.      End if 

19.    End if 

 // compute the scheduled start and finish timings in the 
plan 

20.    If (NODETYPE(x) == ‘Data’) then 

21.       startx = finishy: y = pred(x); 

22.       finishx = startx + (SIZE(x) × DTR(Φ(y),Φ(x) )); 

23.       ASC(Φ(x))  = ASC(Φ(x)) - SIZE(x); 

24.    Else               //x is a task node 

25.       startx = max (finishy + SIZE(y) × DTR(Φ(y), Φ(x) )) : 
y∈pred(x); 

26.       finishx = startx + (SIZE(x) × CR(Φ(x) ); 

27.       releasex = finishx; 

P# Workflow Mapping 
Function 

P1  𝚽 (tentry) = ’client’ 

P2  𝚽(d1),𝚽(d3) = h1                   
𝚽(d2) = h3 𝚽(d4) 
= h2 

P3  𝚽 (t1) = h4 

P4  𝚽(d6) = h3 

P5  ----- 

P6  ------ 

P7  ------ 

P8  ----- 

P9  ----- 

P10  𝚽(d10) = h5 

P11  𝚽(texit) = ‘client’ 

d1	   d2	  

t1	  

d3	   d4	  

d6	  

t5 

t4	  

t3	  t2	  

d8	  d7	  

d5 

d9 

d10	  

tentry	  

texit 
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     // release predecessor dataset resources, if possible    

28.       For each  y∈ pred(x) 

29.           If there exists node ‘z’ such that y∈pred(z)        
And Φ(x) = φ then 

30.              releasey = finishx ; 

31.              ASC(Φ(y)) = ASC(Φ(y)) - SIZE(y);     

32.           End If 

33.       End for 

34.    End while 

35.  End While 

    // compute makespan – include datasets that need to 
be transferred back to client 

36. For each y∈ pred(exit node) 

37.       If releasey == null   then   //must be a data set 

38.          releasey = finishy + (SIZE(y) × 
DTR(Φ(y),‘client’));  

//transferring to the client node may not be 
needed for all nodes. 

39.            End if 

40.    End For 

41.    finishexitnode;= max (releasey): y∈ pred(exit node); 

42.    makespan(ω) = finishexitnode 

43.    return ω and makespan(ω) 

44. END 

	  
(for example, percentage change in average 
makespan) at the end of each iteration. In each 
iteration, three tasks are performed.First, a fixed 
number of execution plans with the shortest 
makespans are selected to be carried over to the next 
generation. Then we randomly cross-over pairs of 
execution plans to generate new valid plans. Finally, 
we modify plans from the previous step by controlled 
mutations that result in valid plans only. The new 
population is then formed by the union of carried 
over plans and genetically modified plan. In the end 
the execution plan with the shortest makespan is 
returned.  

To apply the mentioned constraints of section 3 
we assign a very large makespan value to the 
execution plan which do not meet the constraints. In 
this way, those invalid execution plans have a very 
low chance to be selected for the next generations.  

5.	  EXPERIMENTS	  	  

The two proposed workflow execution planning 
strategies have been simulated in a cloud computing 
environment on Wayne State University’s high 
performance Grid network.  The simulation used 
eight 
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grid nodes and compared the two algorithms by 
simulating five synthetic workflow applications 
based on five real data-centric workflows: Montage, 
CyberShake, Epigenomics, LIGO and SIPHT 
(Bharathi et al., 2008) as well as some asymmetrical 
workflows that are generated randomly. These 
workflow applications are represented in Figure 3 
and were developed through the Pegasus workflow 
management system for different research domains 
like bioinformatics and astronomy. Based on our 
experiments, we observed that our results shown in 
Table 2 are WEP-B settings that we received the 
optimal solutions. 

For these experiments each of the selected 
workflows was run 200 times with different 
parameters as shown in Table 3. They were also 
compared with a K-means based (WEP-K) and a 
random solution generator WEP-R. In addition, we 
evaluated the performance of WEP-B performance 
with 20% of fixed-location datasets. 

Table 2. The optimal settings for WEB-B algorithm.	  
Overall dataset and virtual machine 

Algorithm 2.  WEP-B:  Execution Planning  by 
Evolutionary Optimization  
Input: 
      W:                    Workflow Graph; 
      Ω(H, TYPE, ASC, ACC, DTR, CR): Workflow Execution 
environment, 
      population_size:             size of population, 
      elitism_rate:       rate of elitism, 
      mutation_rate:   rate of mutation, 
      num_iterations:   number of iterations 
 
Output: 
Execution Plan ω and its makespan 

1. BEGIN 

num_elite ← population_size  × elitism_rate; 

num_crossover ← (population_size – num_elite)/2; 

num_mutation ← population_size ×  mutation_rate; 

Populatio←    ;  Populationnew← {  }; Populationtemp← {  }; 

 

2.    For i = 1 to population_size do 

3. Generate  a  new random  mapping, Φ, which       
produces a  

       valid execution plan , ω ≡ (Φ, Γ);  
4.                 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ←   𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  �  {<

                  ω,𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ω >}  ; 
5.    End For 

  
6.    For i=1 to num_iterations do 

7. Populationnew ←   add   top num_elite execution plans 
from Population in the ascending order of makespan; 

8.        For j=1 to num_crossover do 

9.            Select randomly a pair of execution plans say ω A 
and ω B from Population; 

10.            Generate valid execution plans ω C and ω D by an 
appropriate one-point crossover of     
           mapping functions in    ω A and ω B ; 

11.            Populationtemp ← Populationtemp �  {< ω C , 
Makespan (ω C)>, < ω D , Makespan (ω D)>}; 

12.        End for 

13.        For j=1 to num_mutation do 

14.           select a new execution plan, ω A,  randomly from 
Populationtemp ; 

15.           mutate the mapping function in ω A to generate a 
new execution plan, ω B ; 

16.           Replace < ω A , Makespan (ω A)> in 
Populationtemp by < ω B , Makespan (ω B)> 

17.         End for 

18.       Populatin← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"#∪ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"#$; 

      𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"# ←    ; 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛!"#$ ←    ; 

19.     End for 

20.    return the execution plan ω in Population with 
the shortest makespan; 

21. END 

Figure 3: The structure of five realistic data-centric 
workflows [Bharathi et al., 2008] as well as 
asymmetrical sample workflow 

	  
CyberShake	    

LIGO 

	  
Montage	  

    
SIPHT	  

	  	  
Epigenomics	  
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Table 2. The optimal settings for WEB-B algorithm.	  
Overall dataset and virtual machine 

Maximum population size 
Initial population 

Maximum generation 
Crossover probability 
Mutation probability 

100 
Randomly generation 

100 
0.75-0.95 

0.1-0.3 

Figure 4 shows the workflow makespans 
produced by varying the number of hosts and fixing 
the number of workflow nodes. The size of the 
workflow makespans are increased by increasing the 
number of workflow nodes in all three strategies. As 
expected, the WEP-A, WEP-B and WEP-K strategies 
generate execution plans with shorter makespans on 
average than the WEP-R strategy. Furthermore, the 
gap increases as the number of hosts increases. This 
is because a random strategy may spread out the 
workflow and thereby introduce dataset transfer 
delays. Algorithm WEP-B seems to perform better 
than WEP-A and WEP-K. This can be explained by 
the simpler structure of workflows. As the 
complexity and size of workflow graph increases, it 
is expected that WEP-B is likely to perform 
substantially better than WEP-A and WEP-K. It can 
also be noticed that, WEP-A, WEP-B and WEP-K’s 
performances flatten out where the excess availability 
of additional hosts no longer impacts the makespans 
anymore. 

   Figure 5 shows similar results of experiments in 
which the number of hosts are fixed whereas the 
number of nodes in the workflow graph can vary.  In 
a third set of experiments (shown in Figure 6), the 
locations of the varying percentages of the datasets 
are fixed, by fixing the locations of datasets, 
workflow makespans show an increase for the WEP-
A, WEP-B and WEP-K algorithms whereas there is 
almost no change for the WEP-R strategy. This 
behavior is attributed to the fact that by fixing the 
locations of datasets, there is less freedom to reduce 
the makespans by reallocating datasets. 

6.	  RELATED	  WORK	  	  
Cultural Algorithms (CA) is a branch of 

evolutionary computation inspired from social 

evolution. It is composed of a knowledge component 
called belief space as well as 
the population component. CA have been 
successfully applied to various single or multi-
objective optimization problems (Reynolds 1999, 
Jayyousi and Reynolds 2014). Previous research 
work in the context of distributed computing 
environments has been mainly focused on the 
performance modeling and allocation. Due to the 
emergence of e-science and big data workflows, it 
has become important to consider the costs of dataset 
allocation and movement while developing an 
execution plan for a big data workflow. This is even 
more crucial when a big data workflow is executed in 
a distributed environment that involves multiple and 
heterogeneous data centers. Kosar et al., (2005a, 
2005b) proposed an allocation framework for 
distributed computing systems which considered the 
data placement subsystem as an independent module 
along with the computation subsystem. In their 
proposed model, both data placement and task 
computation jobs can be queued, scheduled, 
monitored, managed and even check pointed. 
Kayyoor et al., (2013) modelled the data placement 
and replication strategies for the distributed 
environments. They stated that minimizing query 
latencies is not a critical issue in many analytical 
workload scenarios. So they tried to minimize the 
average number of computational nodes deployed for 
the workflow by grouping the most interdependent 
data together based on their occurrences of their 
common query accesses. Chervenak et al., (2007) 
explored the advantages of separating data placement 
services from workflow management systems. By 
applying an autonomous data placement service 
along with a data replication service, they 
demonstrated the benefits of pre-staging data when 
compared to the data stage in and out strategies of the 
Pegasus workflow management system. Lin and Lu 
(2011) proposed an algorithm for mapping a data-
centric workflow application into a cloud execution 
environment where resources can be dynamically 
acquired using the elastic services of the cloud. 

  In Çatalyürek et al., (2011) workflows were 
modeled as hypergraphs and a hypergraph 
partitioning technique, k-way partitioning, was 
proposed to minimize the cut size. In that way, they 
were able to cluster the workflow tasks along with 
their required data in the same execution site. Yuan et 
al., (2010) applied a heuristic binary clustering 
algorithm to pre-cluster datasets and greedily 
assigned workflow tasks to an execution site which 
contained the most input datasets for that workflow. 
Although their approach placed the most 
interdependent data sets together and can reduce data 
movement, it did not work as well with clusters 

Table 3. Description of dataset and hosts of our experiment. 
Overall workflow nodes and hosts 

# of nodes                                  
(datasets and tasks)  

[50,200,750,3000] 

Dataset size  [1TB – 100TB] 
Task computation  [10Hz – 103Hz] 

# of hosts                               
(datasets and tasks) 

[5,10,25,50,100] 

Data transmission rate [0.1MBps – 3.0MBps] 
Data host storage capacity [200TB – 1PB] 
Task host computation rate [103Hz – 106Hz] 
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of different sizes and different densities. The other 
related work is Er-Dun et al., (2012) where they 

applied Genetic	  Algorithm to heuristically produce  

	   

their data allocation solution along with incorporating 
load balancing as part of optimization criterion. Their 

model reduced data movement but workflow task 
allocation was not considered. 

  This paper extends the BDAP work   of 

 

 
Figure 6. Workflow makespans by varying the percentages of fixed-location datasets for fixed-size of workflows with 1000 

nodes and 50 hosts. 

Figure 4. Workflow makespans by varying the number of hosts 

Figure 5. Workflow makespans by varying the number of workflow nodes 
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Ebrahimi et al., (2015) through the incorporation of 
the following new to the model:  

1.  The workflow makespan minimization 
problem was formulated in terms of a big data 
environment and workflow. This was not addressed 
in the BDAP paper.  

2.  Two new allocation strategies, WEP-A and 
WEP-B, were added to the extended BDAP model. 
While BDAP focused on minimizing data movement 
during workflow execution, WEP-A and WEP-B 
focused on the minimization of the   workflow 
makespans. 

3.  A series of extensive experiments were 
employed to study the performance of WEP-A and 
WEP-B in comparison to WEP-R (a random solution) 
using five real-world workflows. 

7.	  CONCLUSIONS	  	  

   In a workflow that involves big datasets, either 
as inputs or intermediate outputs, its makespan can 
vary greatly depending on how the tasks and datasets 
are allocated in a distributed computing environment. 
This paper provided a formal definition of the 
makespan minimization problem for big data 
workflows, and proposed two efficient workflow 
execution planning strategies. In particular, two 
algorithms WEP-A and WEP-B were proposed. Each 
followed a different allocation strategy. WEP-A 
followed a phased approach to generate an execution 
plan whereas WEP-B used an evolutionary 
optimization strategy to find a valid plan with the 
shortest makespan. Both of these strategies were 
evaluated and compared through extensive simulation 
experiments by varying workflow graphs and 
resources in the workflow environment. Our 
experiments demonstrated that WEP-B performed 
better than WEP-A and WEP-K. In more complex and 
larger scaled workflows, the improvements due to 
evolutionary optimization in WEP-B were likely to be 
become even more pronounced.  

   For future work, we plan to improve our WEP-
B strategy by applying more efficient algorithm like 
Cultural Algorithm or differential evolution. In 
addition, we plan to consider not only workflow 
execution time but also execution cost. In addition, 
we plan to create real workflows and do more real 
experiments. 
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