
SLA-MORL: SLA-Aware Multi-Objective
Reinforcement Learning for HPC Resource

Optimization
Seraj Al Mahmud Mostafa1, Aravind Mohan2, Jianwu Wang1

1Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
2Department of Computer Science, McMurry University, Abilene, TX, USA

Abstract—Dynamic resource allocation for machine learning
workloads in cloud environments remains challenging due to
competing objectives of minimizing training time and operational
costs while meeting Service Level Agreement (SLA) constraints.
Traditional approaches employ static resource allocation or
single-objective optimization, leading to either SLA violations
or resource waste. We present SLA-MORL, an adaptive multi-
objective reinforcement learning framework that intelligently
allocates GPU and CPU resources based on user-defined prefer-
ences (time, cost, or balanced) while ensuring SLA compliance.
Our approach introduces two key innovations: (1) intelligent
initialization through historical learning or efficient baseline runs
that eliminates cold-start problems, reducing initial exploration
overhead by 60%, and (2) dynamic weight adaptation that
automatically adjusts optimization priorities based on real-time
SLA violation severity, creating a self-correcting system. SLA-
MORL constructs a 21-dimensional state representation captur-
ing resource utilization, training progress, and SLA compliance,
enabling an actor-critic network to make informed allocation
decisions across 9 possible actions. Extensive evaluation on 13
diverse ML workloads using production HPC infrastructure
demonstrates that SLA-MORL achieves 67.2% reduction in
training time for deadline-critical jobs, 68.8% reduction in
costs for budget-constrained workloads, and 73.4% improvement
in overall SLA compliance compared to static baselines. By
addressing both cold-start inefficiency and dynamic adapta-
tion challenges, SLA-MORL provides a practical solution for
cloud resource management that balances performance, cost,
and reliability in modern ML training environments. Our code
is open-source and available at https://github.com/big-data-lab-
umbc/SLA-MORL.

Index Terms—SLA, MORL, Service-Level Agreement, Multi
Objective Reinforcement Learning, Optimization

I. INTRODUCTION

Modern High-Performance Computing (HPC) and Cloud
environments increasingly support complex AI models that
process datasets varying widely in size and complexity, ne-
cessitating careful alignment between available resources such
as CPUs and GPUs, and workload requirements. Traditional
management strategies struggle with dynamically matching
resource allocation to these diverse and fluctuating demands,
often leading to inefficient utilization, increased operational
costs, and compromised performance, while over-provisioning
expensive hardware drives operational costs skyward with
marginal performance gains. Multi-Objective Reinforcement
Learning (MORL), a RL mechanism [1] to tackle various
objectives simultaneously, emerges as a promising solution

by learning to adaptively optimize resources through real-time
interactions while balancing multiple competing Service Level
Agreement (SLA) objectives such as cost efficiency, training
time, and resource utilization.

However, applying MORL to complex HPC and Cloud
environments introduces significant challenges. First, RL al-
gorithms suffer from sample inefficiency [2], requiring ex-
tensive interactions with dynamic systems, thus incurring
high computational costs and prolonged training periods [3].
Second, traditional RL methods fail to rapidly adapt to work-
load pattern changes and demand spikes, leading to costly
overprovisioning or detrimental SLA violations [4]. Third,
multi-objective optimization compounds these issues as RL
policies typically prioritize single metrics, neglecting crucial
Quality of Service (QoS) tradeoffs and resulting in resource
hoarding [5]. Furthermore, RL agents lack built-in monitoring
for resource misuse while inadequate state representations
and limited resource capability knowledge lead to suboptimal
configurations [3]. Finally, algorithmic instability, poor sim-
to-real generalization, and exploration-exploitation imbalances
further hinder deployment, risking frequent retraining and
eroded user trust [6].

Current resource optimization approaches suffer from ei-
ther static allocation strategies that ignore dynamic workload
patterns, or reactive adaptive methods that lack workload-
awareness and SLA coordination, resulting in inefficient re-
source utilization, increased operational costs, and compro-
mised performance. We identify two critical research chal-
lenges: (1) Cold-Start and Exploration Inefficiency in Existing
Methods: Traditional approaches begin with random resource
allocations and lack mechanisms to leverage historical pat-
terns, forcing costly exploration from scratch for every new
workload; (2) Static Multi-Objective Optimization: Current
systems employ fixed weight parameters for competing ob-
jectives, failing to adapt dynamically to SLA violations and
changing system states.

To tackle these challenges, we introduce SLA-MORL,
a multi-objective reinforcement learning framework that ac-
cepts model-data pairs and user-defined SLA preferences as
input, and produces optimized resource allocation solutions
with comprehensive performance analytics. The framework
addresses dynamic resource allocation through two key inno-
vations: (1) Intelligent Initialization with Optional Historical



Learning: SLA-MORL eliminates cold-start problems through
an adaptive actor-critic architecture that either pre-trains from
historical logs when available or employs efficient baseline
runs (10% epochs, 20% data) for new workloads, ensuring
intelligent starting configurations without costly random ex-
ploration; (2) SLA-aware Pareto Optimization: Our novel con-
tribution unifies SLA violation detection and adaptive weight
computation into a dynamic reward system that automatically
adjusts optimization priorities based on violation severity.

SLA-MORL supports three user preferences: time (mini-
mize training time using maximum resources where cost can
increase), cost (minimize expense while allowing extended
training time), and balanced (optimize both objectives with
optional user-specified targets). This adaptive capability is
formalized through our core optimization objective:

at = argmax
a∈A

∑
i∈{time,cost,util}

w
(t)
i Ri(st, a), (1)

where w
(t)
i represent adaptive weights that evolve according

to SLA violation patterns and user preferences, st captures
workload characteristics and system state enhanced with pref-
erence encoding, and a ∈ A represents resource configurations
(GPU, CPU).

We evaluate SLA-MORL on 13 diverse ML workloads
using production HPC infrastructure with NVIDIA RTX 8000
GPUs. Our experiments demonstrate significant improvements
over static baselines: 67.2% reduction in training time, 68.8%
reduction in operational costs, and 73.4% improvement in
SLA compliance. These results validate that our two technical
innovations (historical learning for intelligent initialization and
adaptive weight computation for SLA aware optimization) suc-
cessfully address the fundamental challenges in cloud resource
allocation for ML workloads.

II. RELATED WORK

A. Resource Optimization with Reinforcement Learning

Recent advances in deep reinforcement learning have shown
promise for dynamic resource allocation in cloud environ-
ments. Chen et al. [7] propose an A3C-based resource allo-
cation method that combines actor-critic networks to optimize
QoS and energy efficiency. While their approach demonstrates
superior performance over traditional heuristics, it employs
static weight parameters that cannot adapt to SLA violations.
Similarly, Zhao et al. [8] present a DDPG-based task schedul-
ing framework with correlation-aware state representations.
However, both approaches optimize for fixed objectives with-
out considering dynamic SLA requirements.

Liu et al. [9] advance the field with a hierarchical DRL
framework combining global VM placement with LSTM-
powered local server control, achieving significant energy and
latency reductions. Baheri et al. [10] introduce MARS, an
SLA-aware scheduler that combines offline heuristics with
runtime A3C optimization. While MARS considers SLA con-
straints, it lacks our adaptive weight mechanism and suffers
from cold-start problems when historical data is unavailable.

B. Offline to Online Learning Approaches

The integration of offline and online learning has emerged
as a solution for improving sample efficiency in RL systems.
Zheng et al. [11] introduce Adaptive Policy Learning (APL),
where agents pre-train on static datasets before adapting with
online feedback. Wang et al. [12] propose FamO2O, which
pre-trains multiple policies and selects them adaptively per
state. Ball et al. [2] present RLPD, accelerating online learning
through symmetric sampling and ensemble methods.

These offline-to-online approaches primarily target robotics
domains (Niu et al. [13]) or multi-agent environments (Liu et
al. [14]). None address the unique challenges of cloud resource
optimization where workloads vary dramatically and SLA
violations carry immediate financial consequences. Our work
uniquely combines historical learning with dynamic SLA-
aware adaptation for cloud environments.

C. Multi-Objective Reinforcement Learning

Multi-objective optimization in RL has received significant
attention for balancing conflicting goals. Nguyen et al. [15]
propose two actor-critic methods (MCSP and SCMP) that
integrate scalarized rewards into policy optimization. Liu et
al. [16] introduce PSL-MORL using hypernetworks to gen-
erate personalized policies across the Pareto front. Cai et
al. [17] extend Pareto-optimal MORL with distributional ap-
proaches using utility-based reward shaping, Rakshit et al. [18]
introduces informed Pareto Simulated Annealing (iPSA) to
efficiently explore the trade-offs in deployment configurations.

While these MORL methods advance the theoretical foun-
dations, they operate primarily in simulated environments with
static weight parameters. Zhou et al. [19] make progress
with gradient-adaptive Pareto optimization for constrained RL,
but their approach lacks integration with real-world SLA
constraints. Qin et al. [20] address deadline-constrained work-
flow scheduling through DCMORL, yet still rely on fixed
Chebyshev scalarization without adaptive mechanisms.

D. SLA-Aware Resource Management

SLA compliance represents a critical requirement in pro-
duction cloud systems. Souza et al. [21] propose ASAX, an
RL-based HPC co-scheduler using decision tree experts to
maintain QoS constraints, improving utilization by up to 51%.
Haratian et al. [22] present AFRM, a fuzzy resource manage-
ment framework that reduces SLA violations through dynamic
policies. Dai et al. [23] enhance constraint satisfaction through
augmented proximal policy optimization.

However, these SLA-aware approaches share common lim-
itations: they lack learning from historical patterns, operate
with discrete action spaces (Ran et al. [24]), or focus on single
objectives (Peng et al. [25]). None provide the adaptive weight
mechanisms necessary for handling dynamic SLA violations
in multi-objective settings.

E. Research Gap and Our Contribution

Existing approaches fall into three categories, each with
critical limitations: Single-objective RL methods (Chen et



al. [7], Baheri et al. [10]) use static weights and cannot adapt
when SLA violations occur. General MORL frameworks
(Nguyen et al. [15], Liu et al. [16]) lack real-world cloud in-
tegration and operate in simulated environments. SLA-aware
systems (Souza et al. [21], Dai et al. [23]) miss opportunities
for historical learning and adaptive optimization.

SLA-MORL uniquely addresses these gaps through: (1)
intelligent initialization that leverages historical patterns or
efficient baseline runs to eliminate cold-start problems, and (2)
dynamic weight adaptation based on SLA violation severity,
enabling self-correcting resource allocation. Unlike existing
work that treats these challenges separately, we provide an
integrated solution specifically designed for production cloud
environments where both rapid adaptation and SLA compli-
ance are critical.

III. METHODOLOGY

We propose SLA-MORL, a dynamic resource allocation
framework for ML training workloads that intelligently aligns
computational resources (GPU, CPU) with user-defined SLA
preferences through adaptive multi-objective reinforcement
learning.

A. System Overview

Figure 1 illustrates the SLA-MORL architecture, and the
complete process follows Algorithm 1, which operates in four
phases:
Input Phase. The system accepts two inputs: (1) a model-
data pair consisting of ML training code and dataset, and (2)
user-defined SLA preferences specified as either time priority
(e.g., complete within 60 minutes), cost priority (e.g., spend
less than $20), or balanced (e.g., optimize both within given
targets).
Offline Phase (Optional). Before optimization begins, SLA-
MORL can leverage prior knowledge through three possible
paths: (1) load historical CSV logs and extract patterns to pre-
train the Actor-Critic networks, (2) run baseline experiments
using 20% of data for 10% of epochs to gather initial perfor-
mance estimates, or (3) skip this phase entirely and proceed
directly to online optimization.
Online Phase. The core optimization loop executes contin-
uously throughout model training with five interacting com-
ponents. The State Vector constructs a 21-dimensional rep-
resentation of system status. The Change Detector monitors
for significant changes or SLA violations. The Actor-Critic
Network makes resource allocation decisions. The Execute
function implements resource changes through system APIs.
The Adaptive Reward function computes feedback signals
that dynamically adjust based on SLA compliance, forming a
closed-loop system.
Output Phase. The system produces comprehensive reports
including final training metrics, optimal resource configura-
tions, SLA compliance status, and recommendations.

State Vector
● Resources: GPU, CPU
● Utilization: GPU%, CPU%
● Progress: epoch/total
● Metrics: time, cost
● SLA status + Preference

Change Detector

δt > τ_change?
SLA violated?
No → Skip
Yes → Actor Critic

Actor-Critic

Actor → Action
● GPU: -1, 0, +1
● CPU: -1, 0, +1
Critic → Q-value

Execute
● Apply Resources
● Run Training
● Metrics Collection
○ (time, cost, resource 

util, SLA compliance)

Adaptive Reward

● R(s,a) + SLA
● Weights adapt by: 

Preference + SLA 
violations

Repeat until training ends

ONLINE 
(Optimization Phase)

INPUTS

Model-Data 
pair (M, D)

User SLAs
○ Time
○ Cost
○ Balanced

Monitor System
● GPU Metrics
● CPU Metrics
● Training Progress
● Time Tracking
● Cost Accumulation

OFFLINE (optional)
IF historical logs 
exist:
● Load CSV logs
● Train a tiny 

network to 
extract patterns

ELIF: 
● Baseline Runs
● Select 20% 

data
● Run 10% 

epochs

ELSE:
● Skip 

OFFLINE

OUTPUTS
● Time/Cost 

reduction
● Optimized 

config: 
GPU=X, 
CPU=Y

● Recommendations
○ Time optimal, or
○ Cost optimal, or
○ Balanced optimal

● SLA Compliance 
Report

● Detailed report with 
each changes

Fig. 1: Proposed SLA-MORL Architecture.



Algorithm 1 SLA-MORL Overall Training Process

1: Input: Model-data pair (M,D), user preference p ∈
{time, cost, balanced}

2: Output: Optimized resource allocation (g∗, c∗) and per-
formance report

3: Initialize system parameters: τchange = 0.1, α = 0.5,
γ = 0.95

4: Execute Phase 1: Historical Learning or Baseline Initial-
ization (Algorithm 3)

5: Execute Phase 2: Online Optimization with
trained/initialized policy (Algorithm 2)

6: Generate Pareto front from execution history
7: Select best configuration (g∗, c∗) based on user preference

p
8: Return performance report with SLA compliance analysis

B. MDP Formulation for SLA-Aware Resource Allocation

We formalize the dynamic resource allocation problem
as a Markov Decision Process (MDP) defined by the tuple
(S,A, T ,R, γ).

1) State Space Design: The state vector st ∈ R21 captures
system dynamics through six components:

st = [rt,ut,pt, ct,vt,wt], (2)

where Resource Allocation rt = [gt, ct] represents current
GPU count and CPU cores; Resource Utilization ut =
[ugpu

t , ucpu
t ] indicates normalized usage rates; Progress In-

dicators pt = [pepocht , pthroughputt ] tracks training progress;
SLA Compliance Flags ct ∈ {0, 1}6 monitors constraint
satisfaction for each preference type; Violation Severity vt ∈
[0, 1]6 quantifies violation magnitude; and User Preference
wt ∈ {0, 1}3 encodes the selected priority mode.

2) Action Space and Resource Models: We define a discrete
action space for stable resource control:

A = {(∆g,∆c) : ∆g,∆c ∈ {−1, 0,+1}}, (3)

creating 9 possible actions. Our cost and time models are:

Chourly = g · 5.0 + c · 0.5, (4)

Tepoch(g, c) =
Tbase

σ(g) · ρ(c)
, (5)

where σ(g) = 1+0.8(g−1) represents GPU scaling efficiency
and ρ(c) = 1 + 0.1 log2(c) captures CPU benefit.

C. Online Optimization Process

Algorithm 2 presents our online optimization loop that
continuously adapts resources during training.

The change detection threshold τchange = 0.1 balances
responsiveness with stability, triggering adaptation when state
changes exceed 10% or SLA violations occur.

Algorithm 2 Phase 2: Online Optimization with SLA-Aware
Adaptation

1: Input: Pre-trained networks πθ, Qϕ, initial state s0
2: Initialize replay buffer B with capacity 100K
3: for episode e = 1 to 10 do
4: for epoch t = 1 to Tepochs do
5: Observe current state st and compute δt = ∥st −

st−1∥2
6: if δt > 0.1 or SLA violation detected then
7: Identify violated objectives: Vt = {i : c(t)i = 0}
8: Update weights using adaptive mechanism (Eq. 9)
9: Select action at ∼ πθ(·|st) with ϵ-greedy

10: Execute action and wait for stabilization
11: Compute reward rt using Equation 11
12: Store transition in B and update networks
13: end if
14: end for
15: end for
16: Return optimized policy and resource trajectory

D. SLA-Aware Actor-Critic Architecture

1) Network Architecture: Actor Network πθ : S → P(A)
maps states to action probabilities: Input(21) → Linear(128)
→ ReLU → Linear(64) → ReLU → Linear(9) → Softmax.

Critic Network Qϕ : S × A → R estimates Q-values:
Input(30) → Linear(128) → ReLU → Linear(64) → ReLU
→ Linear(1).

Both use Adam optimizer with ηπ = 3 × 10−4 and ηQ =
1× 10−3.

2) Contribution 1: Intelligent Initialization: We address
cold-start through two mechanisms:
Historical Learning. Extract patterns from previous runs:

Phist = {(gi, ci,Mi, Di) → (θi, Ti, Ci)}Ni=1, (6)

where (Mi, Di) are model/data characteristics and (θi, Ti, Ci)
are achieved metrics.
Baseline Initialization. When logs unavailable, run controlled
experiments:

θ̂(g, c) = 5 · θbaseline(g, c), (7)

scaling from 20% data sample to full dataset performance.
3) Contribution 2: Adaptive Multi-Objective Reward Sys-

tem: Base weights reflect user preferences:

wbase =


[0.6, 0.1, 0.3] if p = time priority
[0.1, 0.6, 0.3] if p = cost priority
[0.3, 0.3, 0.4] if p = balanced,

(8)

Dynamic adaptation based on violations:

wadapted
i = wbase

i + α · vi · Iviolated(i), (9)

wfinal
i =

wadapted
i∑

j w
adapted
j

, (10)



Algorithm 3 Phase 1: Historical Learning and Initialization

1: Input: Model M , Dataset D, Historical logs L (optional)
2: if Skip offline = True then
3: Initialize uniformly: (g0, c0) = (1, 2), ϵ = 0.3
4: else if L exists then
5: Extract patterns and pre-train Qϕ

6: Set best historical config, ϵ = 0.1
7: else
8: Run baseline on 3 configs: {(1, 1), (2, 4), (4, 8)}
9: Initialize with estimates, ϵ = 0.2

10: end if
11: Return πθ, Qϕ, (g0, c0)

where α = 0.5 controls adaptation strength.
The multi-objective reward function:

Rt = wfinal
time ·Rtime +wfinal

cost ·Rcost +wfinal
util ·Rutil − Psla,

(11)
where Rtime rewards throughput improvements, Rcost rewards
cost reductions, Rutil encourages efficient utilization near
targets (80% GPU, 70% CPU), and Psla penalizes violations.

IV. EXPERIMENTS

A. Experimental Setup

Infrastructure. All experiments were conducted on a
SLURM-based HPC cluster equipped with NVIDIA Quadro
RTX 8000 GPUs (48GB VRAM each), Intel Xeon Gold 6148
processors (40 cores @ 2.40GHz), and 384GB RAM per
node. Resource monitoring was performed using pynvml for
GPU metrics and psutil for CPU utilization at 1Hz frequency.
Resource control was achieved through SLURM’s scontrol
commands and CUDA environment variables.
Implementation Details. SLA-MORL was implemented us-
ing PyTorch 1.13. The Actor-Critic networks were trained
using Adam optimizer with learning rates ηπ = 3 × 10−4

for the actor and ηQ = 1 × 10−3 for the critic. We used an
experience replay buffer with 100K capacity and batch sizes
ranging from 32 to 512 depending on GPU allocation.
Benchmark Tasks. We evaluated SLA-MORL on 13 model-
data pairs across two categories: (1) computationally intensive
remote sensing models, namely CAM [26], gWaveNet [27],
and DAMA [28]; and (2) standard computer vision tasks,
such as VGG16 and ResNet50/101 on CIFAR-10/100, and
Transformer and ResNet101 on CIFAR-100 and ImageNet100
(ImageNet with 100 classes). All models were trained for 200
epochs without early stopping to ensure a fair comparison.
The evaluation covered a range of dataset sizes and model
complexities.
Baseline Methods. We compared against five approaches: (1)
Basic: fixed resource allocation (one GPU and its available
CPU cores) without optimization, (2) Static recom: one-time
optimal allocation based on workload analysis, (3) SLA-
MORL lite: our method without offline phase and actor-critic
part, (4) SLA-MORL base runs: using only three baseline
initializations with 10% epochs and 20% randomly chosen

data, and (5) SLA-MORL w target logs: leveraging logs from
similar workloads.

B. Results and Analysis
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Fig. 2: Resource allocation patterns across SLA priorities
showing GPU/CPU allocation and reward evolution over train-
ing epochs.

Dynamic Resource Allocation. Figure 2 demonstrates SLA-
MORL’s adaptive behavior across three priority configura-
tions. When time priority is selected and jobs must complete
by deadline, SLA-MORL aggressively allocates resources,
scaling up to 4 GPUs when necessary to minimize training
duration. This results in higher costs but ensures deadline
compliance. For cost priority workloads where budget is
the primary concern, the system maintains minimal resource
allocation (typically 1-2 GPUs and 2-4 CPUs) to reduce
operational expenses while accepting extended training times.
The balanced priority exhibits the most dynamic behavior,
with frequent resource adjustments as the system continuously
navigates the time-cost tradeoff to satisfy both objectives



simultaneously. The reward signal validates our design: it
becomes negative when resources are over-provisioned (in-
dicating waste), and positive when resources are optimally
reduced without compromising performance.

TABLE I: Performance Improvement by Priority Type (%) -
Average Results Across 13 Model-Data Pairs.

Methods Time Cost Balanced
Basic - - -
Static recom 33.4 38.7 39.2
SLA-MORL lite 47.6 43.1 44.8
SLA-MORL base runs 58.2 46.9 52.7
SLA-MORL w target logs 61.4 48.3 56.1
SLA-MORL 63.7 49.8 58.4

Overall Performance. Table I presents average performance
improvements across all 13 model-data pairs compared to
the basic baseline. The Basic method shows no values as
we intentionally use it as the reference point (0%) for cal-
culating relative improvements of all other methods. SLA-
MORL achieves remarkable gains: 63.7% reduction in training
time for time-priority workloads and 49.8% cost reduction
for cost-priority jobs. These improvements significantly out-
perform static approaches, which achieve only 33.4% and
38.7% respectively. The progression from SLA-MORL lite to
the full version validates our contributions: historical learning
capability adds approximately 15% additional improvement,
demonstrating the value of leveraging past execution patterns.

Static_recom SLA-MORL_lite SLA-MORL
Approach
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Fig. 3: SLA compliance rates showing dramatic reduction in
violations across 13 model-data pairs for different priority
types.

SLA Compliance Analysis. Figure 3 presents one of our most
important results: the dramatic reduction in SLA violations
achieved by SLA-MORL across all 13 model-data pairs. This
figure demonstrates how our adaptive approach significantly
improves the system’s ability to meet user-defined constraints.
SLA-MORL achieves 61.8% compliance rate for time priority

workloads (compared to only 17.4% for static approaches),
77.1% for cost priority (versus 33.8% static), and 82.1%
for balanced priority (versus 39.2% static). The consistently
higher compliance rates across all priority types validate our
adaptive weight mechanism’s effectiveness. Time constraints
prove most challenging due to their strict nature and the
unpredictability of training dynamics, while balanced mode
achieves the highest compliance by allowing flexible tradeoffs
between objectives.

TABLE II: Comprehensive Performance Metrics Averaged
Across All 13 Model-Data Pairs.

Methods Reductions (%) Improvements (%)
Time Cost SLA Efficiency

Basic - - 19.2 -
Static recom 48.7 50.2 59.1 49.5
SLA-MORL lite 52.4 54.1 62.8 53.3
SLA-MORL 67.2 68.8 73.4 68.0

Comprehensive Evaluation. Table II summarizes perfor-
mance across all experimental configurations. We excluded
SLA-MORL base runs and SLA-MORL w target logs as
they have nearly identical results to SLA-MORL. SLA-
MORL achieves 68.0% overall efficiency (calculated as the
average of time and cost reductions), representing a 37%
relative improvement over static approaches. The consistent
gains across diverse workloads validate the generalizability of
our approach.RetryClaude can make mistakes. Please double-
check responses.
Pareto Frontier Analysis. Figure 4 illustrates the fundamental
time-cost tradeoff across different priority configurations. The
distinct regions show how each priority mode operates: time
priority (blue region) accepts higher costs to achieve faster
execution, cost priority (green region) minimizes expenses
while tolerating longer training duration, and balanced pri-
ority (orange region) finds optimal middle ground between
these extremes. SLA-MORL solutions (marked with ‘stars’)
consistently achieve superior positions on the Pareto frontier
compared to baseline methods, demonstrating our framework’s
ability to find better tradeoffs regardless of user preference.
Qualitative Comparison with Existing Work. Table III
provides a comprehensive comparison of SLA-MORL against
state-of-the-art approaches across multiple dimensions. Our
framework uniquely combines several critical features absent
in existing work: dynamic weight adaptation based on SLA
violations, explicit user preference support, and validation on
real HPC infrastructure rather than simulations. While MARS
achieves 5-60% improvements on specific workflow types,
SLA-MORL consistently delivers 67-69% gains across diverse
ML workloads, demonstrating superior generalization.

C. Ablation Studies

We included ablation studies through SLA-MORL varia-
tions such as, SLA-MORL lite, SLA-MORL w target logs
and SLA-MORL base runs to validate our design choices:



Fig. 4: Pareto frontiers for different priority configurations on gWaveNet [27] workload. Stars indicate SLA-MORL’s superior
solutions. Pareto frontiers for other datasets can be found in the open source link.

TABLE III: Qualitative Comparison with State-of-the-Art Resource Optimization Approaches.

Features Baheri et al. [10] Chen et al. [7] Peng at al. [25] SLA-MORL (Ours)
Optimization Objective Cost-aware scheduling QoS + Energy efficiency Makespan + AWT Multi-objective SLA
RL Algorithm Actor-Critic ensemble Actor-Critic DRL Q-Learning MORL + Actor-Critic
SLA Awareness ✓ × ✓ ✓
User Preference Support × × × ✓
Adaptive Weight Mechanism × × × ✓
Historical Learning Pre-trained models × × ✓
Performance Improvement 5-60% vs baselines Superior QoS Reduced makespan 67% time, 69% cost
Evaluation Environment Workflow traces Datacenter sim. CloudSim simulation Real HPC system

State Space Components. Removing SLA compliance flags
(ct) and violation severity (vt) from the state representation
reduces overall performance by 23%, confirming these com-
ponents are essential for adaptive behavior.
Adaptive Weight Mechanism. Using fixed weights instead of
our dynamic adaptation decreases SLA compliance by 31%
on average, with time priority workloads suffering the most
(42% drop). This validates the importance of runtime weight
adjustment.

D. Limitations and Future Work

SLA-MORL is currently deployed and tested on a small
scale with limited resources. Scaling to larger GPU clusters
would bring additional challenges and thus require further
investigation into resource management strategies. The linear
cost model, while effective for current cloud pricing, may
need extensions for spot instances or heterogeneous resource
types. Future work includes supporting larger and multiple
HPC systems, including cloud architectures such as AWS,
Azure, and GCP.

V. CONCLUSION

This paper presented SLA-MORL, a practical multi-
objective reinforcement learning framework for dynamic re-
source allocation in HPC environments. By addressing two
fundamental challenges in adaptive resource management, we

demonstrated that intelligent initialization and dynamic SLA-
aware adaptation can significantly improve both efficiency and
reliability of ML training workloads.

Our two key contributions, intelligent initialization to elim-
inate cold-start and adaptive weight adjustment for SLA
violations demonstrate that dynamic resource management
can significantly improve both efficiency and reliability in
production ML workloads. The consistent performance gains
across diverse tasks validate the practical applicability of
our approach. Extensive evaluation on 13 diverse ML work-
loads using production HPC infrastructure validates our ap-
proach. SLA-MORL achieves 67.2% reduction in training
time for deadline-critical jobs, 68.8% cost reduction for
budget-constrained workloads, and 73.4% improvement in
SLA compliance compared to static baselines. The consistent
performance gains across different workload types and user
preferences demonstrate the generalizability and robustness of
our framework.

SLA-MORL represents a significant step toward au-
tonomous cloud resource management, providing a foundation
for next-generation systems that can intelligently balance
performance, cost, and reliability without manual interven-
tion. The open-source release of our implementation aims to
accelerate adoption and further research in adaptive resource
optimization for increasingly complex computational environ-
ments.
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