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Abstract
The big data era is here, a natural result of the digital revolution of the last few decades. The emergence of big
data in virtually all areas of life raises a fundamental question - how can we turn large volumes of bits and bytes
into insights and possibly values? The answer to this question is often hindered by three big data challenges:
volume, velocity, and variety. While scientific workflows have been used extensively in structuring complex
scientific data analysis processes, they fall short in meeting the three big data challenges on the one hand, and
in leveraging the dynamic resource provisioning capability of cloud computing on the other hand. To address
such limitations, we propose and develop the concept of big data workflow as the next generation of data-centric
workflow technologies. In this paper we: 1) identify the key challenges for running big data workflows in the cloud;
2) propose a reference architecture for big data workflow management systems (BDWFMSs) that addresses these
challenges, 3) develop DATAVIEW, a big data workflow management system, to validate our proposed reference
architecture, 4) design and run two big data workflows in the automotive and astronomy domains to showcase
applications of our DATAVIEW system.
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1. INTRODUCTION

The big data era is here, a natural result of the digital
revolution of the last few decades. Data are being gen-
erated by a myriad of devices and events, from credit
card transactions and ad clicks, to fitness wristbands and
connected vehicles. This data deluge raises a fundamen-
tal question - how can we turn large volumes of bits and
bytes into insights, decisions, and possibly values? The
answer to this question is often hindered by three big
data challenges: volume, velocity, and variety.

Consider the driver behavior analysis problem, in
which we need to determine a driver’s insurance pre-
mium based on their last three year’s driving history1.
Such an analysis involves large volume of data (over
75Gb per driver per year for OpenXC data Kashlev &
Lu (2014a) or 750Mb/sec for a self-driving car), and to
be more accurate, needs to be performed in combina-
tion with other data, such as data about the environment
in which the vehicle is operating (weather, traffic, haz-
ardous situations, etc.), and the driver’s past claims and

1For example, State Farm uses telematics to monitor a driving
behavior by scoring the driver on various parameters, such as accelera-
tion, braking and cornering.

accident reports. The analysis is complex: one needs to
extract all relevant features of the driving behavior from
the raw data, perform deep analysis of these features in
the context of other data sources to determine the risk
of the driver, and based on the risk and the price model
of the insurance company, suggest a quote for a given
driver.

This kind of data analyses are often performed us-
ing scientific workflows, which are widely recognized
to be an important paradigm in the services computing
field Zhang (2011); Tsalgatidou et al. (2006) as they
allow data scientists to compose various heterogeneous
services into data analysis pipelines. While scientific
workflows have been used extensively in structuring
complex scientific data analysis processes, they fall short
in meeting the three big data challenges on the one hand,
and in leveraging the dynamic resource provisioning
capability of cloud computing on the other hand. As
scientists need to process data of high volume, velocity,
and variety, it is imperative to enable scientific work-
flows to use distributed computing and storage resources
available in the cloud in order to run so called big data
workflows Kashlev & Lu (2014b); Hoffa et al. (2008).
A big data workflow is the computerized modeling and
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automation of a process consisting of a set of computa-
tional tasks with data interdependencies to process and
analyze data of ever increasing in scale, complexity, and
rate of acquisition.

Unlike scientific workflows run in traditional on-
premise environments such as stand-alone workstations
or grids, big data workflows rely on dynamically provi-
sioned computing, storage, and network resources that
are terminated when no longer needed. This dynamic
and volatile nature of cloud resources as well as other
cloud-specific factors introduce a new set of challenges
for “cloud-enabled” big data workflow management sys-
tems (BDWFMSs).

Although several traditional scientific workflow man-
agement systems (SWFMSs) have been developed to
use cloud resources, they are geared towards either a
specific domain such as bioinformatics Abouelhoda et al.
(2012); Emeakaroha et al. (2013) or astronomy Vöckler
et al. (2011), or a particular type of workflows such as
workflows with parameter sweep and data fragmentation
parallelism de Oliveira et al. (2010), or workflows with
time and cost QoS constraints for each task Wu et al.
(2013). While such ad hoc implementations account for
particularities of their target applications, they do not
address the breadth of challenges in managing scientific
workflows in the cloud. In addition, these solutions do
not consider the problem of moving big data products.
Thus, a more generic, implementation-independent so-
lution is needed that would address a broader scope of
cloud-related challenges in a systematic way. This can
be achieved through a comprehensive study of cloud-
related challenges from an architectural perspective. To
address this need, in this paper we:

1. identify the key challenges of running big data
workflows in the cloud,

2. propose a generic implementation-independent sys-
tem architecture that addresses these challenges,

3. develop a cloud-enabled BDWFMS called
DATAVIEW that delivers a specific implementa-
tion of our architecture and present two case studies
from the automotive and astronomy domains to
validate our solution.

We have tested our DATAVIEW implementation of
the proposed architecture in three different cloud envi-
ronments - Amazon EC2, FutureSystems Eucalyptus
and FutureSystems OpenStack IaaS clouds2. We ran a

2FutureSystems portal was previously called FutureGrid

workflow analyzing 3 Gb of vehicle data in OpenXC
format OpenXC (2016). As the average adult driver in
the US may generate up to 75 Gb of such driving data
annually, the total amount of data generated in the US
may exceed 14 Eb (1018 bytes) per year Arbitron (2009);
Kashlev & Lu (2014a).

This paper extends our earlier work Kashlev & Lu
(2014b) with the following additional contributions:

1. We have identified five additional (sub-)challenges
for running big data workflows in the cloud.

2. We have introduced two new modules in the archi-
tecture of the Cloud Resource Manager subsystem
that enable intelligent and lightweight dependency
management using docker containers.

3. We have added the Elastic Resource Management
module in our Workflow Engine subsystem that dy-
namically adjusts the amount of virtual resources
during workflow execution on as-needed basis,
which improves resource utilization.

4. We have conducted another case study in which we
ran a montage big data workflow from the astron-
omy domain in parallel across 20 virtual machines
in the Amazon EC2 to further validate our architec-
ture.

2. MAIN CHALLENGES FOR RUN-
NING SCIENTIFIC WORKFLOWS IN
THE CLOUD

Scientific workflows can be thought of as data
pipelines consisting of heterogeneous software compo-
nents connected to one another and to some input data
products Tsalgatidou et al. (2006); Zhao et al. (2011).
These components may include local executable pro-
grams, scripts, Web services, HPC jobs, etc. Such work-
flows are designed using scientific workflow manage-
ment systems, which provide domain scientists with
intuitive, user-friendly interfaces to design and execute
data intensive workflows. SWFMSs help remove techni-
cal burdens from researchers, allowing them to focus on
solving their domain-specific problems.

While cloud computing opens many exciting oppor-
tunities for running scientific workflows, it also poses
several challenges that are not present when running
workflows in traditional on-premise environments. As
we explain below, several aspects of cloud computing
make it more difficult to maintain usability and user-
friendliness of SWFMSs. In our work we run the entire
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system in the cloud, according to the “all-in-the-cloud”
approach Zhao et al. (2011). The system is deployed
on a virtual machine in the cloud (master node) and
is accessed remotely through a Web-based GUI inter-
face. BDWFMS schedules workflows to run on multiple
virtual machines (slave nodes) such that different parts
of workflows run on different nodes to enable parallel
execution. To start executing a workflow, BDWFMS
provisions an appropriate amount of virtual machines
that it will use to run the workflow. At the end of work-
flow execution, the slave nodes are terminated. We now
describe major cloud-related challenges and their impact
on scientific workflow management in the cloud.

2.1 PLATFORMS HETEROGENEITY CHAL-
LENGE

As cloud computing is still a relatively young field,
there is no single universally accepted standard for com-
municating with the cloud, provisioning resources and
managing virtual machine images. Heterogeneity of ex-
isting cloud platforms hinders workflow management in
the cloud at several levels.

2.1.1 Connecting to the cloud

The process of connecting to a particular cloud is de-
fined by the cloud provider and is generally different
for different vendors. Connecting to the cloud typically
involves providing a security key, and in some cases
performing initial configuration (e.g., sourcing eucarc
and novarc), and loading client software (e.g., euca2ools
and novaclient), as in the case of both Eucalyptus and
Openstack clouds FutureSystems (2017). On the other
hand, consider the process of accessing a remote server
via ssh. Since ssh is an established standard, connecting
to any new server is a well-defined procedure requir-
ing no learning effort from users. However, connecting
to a cloud is technically more challenging as this pro-
cess varies by vendors, which puts a burden on the user
of having to learn multiple vendor-specific connection
protocols and APIs.

2.1.2 Resource provisioning

The interfaces exposed by various providers to pro-
vision cloud resources are also different (although in
some cases slightly different). There exists no standard
for provisioning resources in different clouds in a uni-
form way. For example, while Amazon EC2 EC2 (2017)
provides Java API tools to manage its cloud resources
programmatically, OpenStack OpenStack (2017) pro-
vides RESTful interface as well as python and command
line implementations of OpenStack Nova API.

2.1.3 Creating machine images

The process of bundling, uploading, and registering
images also varies across different cloud platforms. In
Eucalyptus, an image of a running instance is created
by executing the euca-bundle-vol command inside the
instance, which produces and saves the image file within
the file system of that instance. Because it uses local
drive of the VM, it requires large amount (e.g., 6 Gb) of
free disk space which may not be available and may be
difficult to arrange. In Openstack, on the other hand, the
nova image-create command is run to save image file
outside of virtual machine (VM) whose state is captured
by the snapshot.

2.1.4 Migrating workflows between cloud platforms

Oftentimes after running a workflow in one cloud, the
user may want to switch to another cloud (e.g., for a
better price or customer service). Choosing the number
and types of instances to be provisioned in the target
cloud environment is a critical step as it determines how
long the workflow will run, and the cost of execution
if the cloud is proprietary. This is particularly relevant
to big data workflows that can run many hours or days.
However, various cloud providers support different sets
of instance types. For example, Amazon EC2 offers fifty
seven on-demand instance types, while Openstack by de-
fault offers six instance types (called flavors). The types
of instances the user had employed in the original cloud
may not be supported by the target cloud. Thus it is often
non-trivial to allocate an equivalent set of machines in
the target cloud. Therefore, such platform heterogene-
ity makes it challenging to access clouds of different
vendors and provision virtual resources in a uniform
way. Besides, inconsistent instance types complicate
migration from one cloud to another.

2.2 RESOURCE SELECTION CHALLENGE

Deciding on and provisioning appropriate amount of
resources for a given workflow is a challenging task.
Domain scientist needs to perform this task not only
initially, upon creating the workflow, but also when re-
running the workflow with a different set of input files
and/or input parameters.

2.2.1 Initial resource selection

Running a workflow in the cloud requires user (i.e. a
domain scientist) to make a choice of the number and
types of virtual machines to execute the workflow. Given
a particular configuration (e.g., four m1.xlarge, seven



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 4Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 4Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 4

m3.xlarge, and three c1.medium servers), it is hard to de-
termine an optimal schedule, and hence an optimal run-
ning time, since the scheduling problem is NP-complete
in general. Thus, it is challenging to compare which con-
figuration is better and to choose the best configuration
for a given workflow, especially given the exponential
size of the search space. Consider a sample workflow
shown in Fig. 1.

The blue boxes represent computational components
(i.e. tasks), while the yellow boxes denote data products,
which in this case are files. If the user chooses to run
this workflow in Amazon EC2 cloud using three virtual
servers, there are 573 = 185,193 possible choices for
instance types for the three servers, since EC2 offers 57
instance types. This number will grow exponentially
if the user would like to employ more VMs (e.g., for
workflows with larger degrees of parallelism).

Figure 1: Big data workflow analyzing automotive data.

2.2.2 Resource selection when re-running the work-
flow

After a successful workflow execution, scientist may
often need to re-run the workflow with a different set of
input data products, such as files, and/or a different set
of input parameters, as is the case in parameter sweep
workflows. To re-run the workflow it may often be neces-
sary to use more resources, e.g., if input files are larger,
or if shorter makespan is desired. Determining what
kind of new resources must be provisioned to achieve a
given performance objective is a complicated task, e.g.,
how many new VMs to create and what type each VM
should be to decrease the makespan by 20%. For ex-
ample, if a workflow in Fig. 1 has been executed using
three m1.xlarge virtual machines, adding the fourth VM
of type m1.xlarge will clearly not improve workflow per-

formance, since one of the four VMs will remain idle
throughout the entire workflow execution.

2.3 RESOURCE UTILIZATION CHALLENGE

Consider the Montage workflow from astronomy do-
main shown in Fig. 2. The workflow consists of mul-
tiple components (shown in blue), that analyze data to
produce a mosaic of a set of sky images. Many data-
intensive tasks in the workflow, including mProjectPP,
mDiffFit, mFitExec and mBgExec are executed in par-
allel, in different virtual machines. For example, five
instances of mDiffFit process different data products in-
dependently by being executed on five different VMs.
This allows to reduce the workflow execution time, of-
ten referred to as makespan. Note, that the degree of
parallelism of the workflow varies at different stages of
workflow execution. It starts with four parallel branches
(mProjectPP), then increases to five (mDiffFit), before
decreasing to four mBgExec, and finally to one (mAdd
and mJPEG). Fully taking advantage of this parallelism
requires using five VMs for executing the workflow.
However, only four out of five VMs will be used while
running mProjectPP and mBgExec tasks. Moreover,
only one out of five VMs will do useful work when ex-
ecuting mAdd and mJPEG components. Needless to
say, that the user continues to pay for all five VMs, in-
cluding those that are idle. Thus, leveraging workflow
parallelism by executing independent branches in sepa-
rate virtual machines has a side effect of poor resource
utilization. Due to the fact that provisioning virtual ma-
chine takes time (often 30s and sometimes more), it is
difficult to quickly add VMs on as-needed basis without
introducing a delay in the workflow execution. We de-
fine VM utilization UVM for a given period of time t as
follows

UVM =

n

Â
i=1

Ai

n

Â
i=1

Ai +
n

Â
i=1

Ii

(1)

where Ai denotes the total duration, in seconds, that a
virtual machine VMi was active, i.e. was performing
computations, and Ii refers to the total time when VMi
was idle. When all the provisioned VMs are performing
computations for the entire duration of t, UVM = 1.

Besides VMs, it is sometimes difficult to track storage
volumes that are no longer needed, which leads to need-
less expenses. For example, an intermediate data product
can be saved in a large file and placed on an EBS storage
volume. After such file is consumed by the downstream
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component, neither the file nor the EBS volume are ever
accessed again during workflow execution. Paying for
such storage volumes to keep intermediate results for
the entire duration of the workflow leads to unnecessary
expenses. For example, in our montage workflow, the
output file produced by the mBgExec task may be saved
on an EBS volume attached to the VM where mBgExec
executes. Once the file is sent to the VM where mAdd
component runs, the EBS volume and its contents are no
longer needed and hence can be deleted to save the cost.

2.3.1 Resource reusability

Reusing spare resources for running workflows is an
important aspect of cloud-based workflow management.
Spare virtual resources may appear after or during work-
flow run(s). When a workflow execution completes, the
virtual machines used for running this workflow become
idle and can be reused or terminated. Besides, spare
resources may appear even before workflow finishes ex-
ecuting. For example, consider a workflow in Fig. 1,
scheduled to run on three virtual machines, VM1, VM2,
and VM3. Upon completion of three parallel branches,
the output files produced by AnalyzeGasBrk and Ana-
lyzeBrkngTurns components are sent to VM2, leaving
VM1 and VM3 idle for the rest of the workflow execution.
Thus, VM1 and VM3 can now be terminated or reused
for running other workflows.

Reusing such VMs for running new workflows may
1) save time, as there will be no need to wait while the
new VMs are being provisioned, 2) save cost, in case if
VMs have been prepaid (e.g., in AWS VMs are paid for
by hour without prorating the cost if terminated earlier).
However, reusing such virtual resources is complicated
for the following reasons.

1. It is challenging to configure existing VMs to sat-
isfy all the dependencies of the new workflow, e.g.,
required libraries, software packages, environment
variables, etc. For example, if a scientist wants to
reuse existing VMs to run the astronomy workflow
shown in Fig. 2, one must install montage software
on these VMs, to be able to run mProjectPP, mDiff-
Fit, mAdd, and other image processing components
specific to astronomy domain.

2. It is often hard to reuse a set of existing virtual
machines while ensuring the desired workflow per-
formance, especially if some of these VMs are lo-
cated in different regions (geographic locations),
which can introduce latency due to limited network

bandwidth. Sometimes, terminating some of the ex-
isting VMs and provisioning new VMs in the same
region will help faster execute the workflow due to
a superior network performance. It is a challenge
to accurately determine which VMs should be ter-
minated/replaced and which VMs can be readily
reused for running a new workflow.

2.4 RESOURCE VOLATILITY CHALLENGE

Cloud computing allows to provision and terminate
virtual servers and storage volumes on demand. How-
ever, due to various failures, loss of resources often oc-
curs (e.g., VMs crashed). Such dynamic nature of cloud
resources has several important implications on scien-
tific workflow management in the cloud as we explain
in the following.

2.4.1 Persisting output data products

As the workflow execution occurs in the cloud, the
output data products that are of interest to the users are
also initially saved in the cloud. After execution is com-
plete, user may often need to terminate the instances on
which it was running, to avoid paying for the unused
virtual servers. Thus, the BDWFMS should provide a
way to persist output data products to avoid their loss
upon terminating virtual machines. This task may be
non-trivial in the case of big data workflows with large
output files. The user may want to have the option of
saving files on his system (client PC) or to place them in
a reliable storage, such as Amazon S3. In some cases,
users may want to download only output files whose size
is under certain threshold (e.g., if the file is 1 GB or less,
download it to the client machine, otherwise âĂŞ store
it in S3 bucket). 2) Registering new components or data
products In the dynamic and collaborative environment,
users often share their work with each other, oftentimes
in the form of scripts or Web services. These new compo-
nents can be registered with the BDWFMS and used for
composing new workflows. While on a single machine
addition of a new component is only performed once, for
a BDWFMS running in a virtual machine in the cloud
a one-time registration of a component is not sufficient
since upon machine termination this update will be lost.
The same applies to new data products added to a virtual
machine. For example, the user may want to add new
interesting datasets to use in future workflows. However,
unless precautions are taken, these files may be lost upon
terminating the VM.

2.4.2 Cataloging virtual resources
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Figure 2: Montage workflow for creating a mosaic of sky images.

Running workflow in the cloud involves executing
individual components, residing in different virtual ma-
chines, which requires connection-related details for
each VM, such as its IP address, credentials (username,
password, public key), and status information. It is a
challenge to capture in a timely manner changes in VM
configurations, their status information, and other meta-
data. For example it is hard to capture the moment when
VM becomes available for use, since cloud providers
often prematurely report that the machine is “available”.

Additional challenges may arise when VMs are ac-
cessed for the first time using ssh, requesting to add their
public key to the known_hosts file of the client. Thus,
although the instance is running, it may not be ready for
use in workflow execution - the situation that can prevent
workflow from running. Our experience with running
scientific workflows in the cloud environment shows
that, if overlooked, such seemingly insignificant nuances
lead to numerous workflow failures. Similar cataloging
should be done for any other virtual resources (e.g. S3
buckets with output data products, machine images, etc.)

2.4.3 Environment setup

Scientific workflows are often built from components
requiring certain libraries and packages to run. As we ex-
plain in further sections, the ComputeGrade component
from sample workflow in Fig. 1 relies on the Apache

Mahout software to classify a driver’s profile. Running
the ComputeGrade component in the cloud requires a
virtual machine with Apache Mahout installed on it.
However, even if one creates a VM instance and man-
ually installs Mahout on it, once workflow execution
finishes and the machine is terminated, re-running the
workflow requires provisioning another virtual machine
and installing Apache Mahout again. Other components
may have entirely different sets of dependencies. While
on a single node machine, resolving these dependencies
is a one-time procedure, in the cloud environment such
configuration would be lost upon terminating the virtual
machine. Thus, it is a challenge to provision a set of
virtual machines each of which satisfies all dependencies
of workflow component(s) scheduled to run on it.

In summary, the volatile nature of cloud resources
imposes a challenge of persisting output files and newly
registered workflow components and data products in
case if all VMs are terminated. It is also a challenge
to keep track of dynamically changing list of virtual
machines and credentials to each virtual server and to
track which of these machines is ready to run workflows.
Finally, creating VMs suitable to execute workflow com-
ponents is a challenge, given unique dependencies of
each component.

2.5 DISTRIBUTED COMPUTING CHALLENGE

The fact that the workflow execution is performed
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in a distributed manner complicates big data workflow
management in several ways.

2.5.1 Passing big data products to consumer compo-
nents

Unlike a single-machine workflow run, cloud-based
workflow execution involves components that consume
data that physically reside in other virtual machines. Sup-
plying all data products required by a particular compo-
nent requires knowing hostnames or IP addresses of each
VM storing these data products. This in turn requires
keeping track of where every data product resides. The
latter can be a non-trivial task in case of large number
of dynamically created/deleted VM and data products.
Besides, as virtual networks in the cloud environments
are normally slower than physical networks used in other
infrastructures such as grid or cluster, it is a challenge to
efficiently move large data from upstream components
to downstream components, especially given the size of
big data products.

2.5.2 Logging & workflow monitoring

The fact that execution occurs in multiple machines
complicates logging process, especially if the cloud net-
work bandwidth is limited. Even sending a simple one-
word status update message from one node to another
during workflow execution message may incur a tangi-
ble delay. Therefore, it is challenging to log workflow
execution in a distributed environment without slowing
down workflow execution. Same challenges apply to
monitoring the statuses of individual workflow compo-
nents.

2.5.3 Workflow debugging

In the event if a workflow execution fails, the need
arises to backtrack the execution path to determine the
cause of a failure, with the goal of re-running the work-
flow. The fact that workflow components execute in
different virtual machines and send their data products
across network makes debugging complicated. For ex-
ample, it is common for a workflow execution to fail
when one of the processes attempts to save file that does
not fit on the disk. Diagnosing such failures is challeng-
ing as the error messages are often hard to find.

2.5.4 Fault tolerance

Enabling automated fault-tolerance capabilities, such
as smart re-runs, is challenging for two reasons:

1. Given the distributed nature of cloud-based work-
flow execution, often across dozens and even hun-
dreds of virtual machines, it is difficult to capture
which parts of workflow have successfully finished.

2. Re-running a failed workflow will lead to an error
again, unless appropriate changes are made to ad-
dress the original cause of the workflow failure. For
example, a new storage volume must be created
and attached to a virtual machine, if a workflow
failed due to a lack of storage space in this VM.
Determining what changes must be made to ensure
successful workflow re-run and performing such
changes in an automated manner represents a great
challenge.

2.5.5 Provenance collection

Since different components generally execute inside
different virtual machines, collecting and storing the
data derivation history of the entire workflow, while
providing query and browsing interfaces, is a challenge.

3. A SYSTEM ARCHITECTURE FOR
BDWFMS IN THE CLOUD

We now present our proposed BDWFMS architecture,
implemented in the DATAVIEW system, shown in Fig. 3.
The main subsystems of DATAVIEW are Workflow De-
sign and Configuration, Workflow Presentation and Visu-
alization, Workflow Engine, Workflow Monitoring, Data
Product Management, Provenance Management, Task
Management, and Cloud Resource Management. The
Presentation Layer contains the client-side part of the
system. The Workflow Management Layer contains sub-
systems orchestrating the progress of the data flow. The
Task Management Layer contains modules that ensure
successful execution of individual tasks in the cloud. Fi-
nally, the Infrastructure Layer contains the underlying
IaaS cloud platforms where workflows are dispatched.
According to the “all-in-the-cloud” approach Zhao et al.
(2011), DATAVIEW system runs in the master node (see
Fig. 3d). The modules of DATAVIEW that are necessary
to run a portion of the workflow on a single machine
(but not to coordinate distributed workflow execution)
are called DATAVIEW Kernel, which is deployed on
each of the slave nodes created at runtime. The mas-
ter node is responsible for all the “housekeeping” work
and coordinating associated with workflow execution
and storage. It is not intended to perform actual data
processing during the workflow run and thus it does
not require high performance virtual machine, which
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Figure 3: (a) System architecture for big data-oriented BDWFMS in the cloud and zoom-in views of its two subsystems: (b) Workflow
Engine, and (c) Cloud Resource Manager. (d) All-in-the-cloud deployment architecture of DATAVIEW.
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reduces the cost of workflow management in the cloud.
We now present an overview of each of the subsystems
of DATAVIEW.

The Workflow Design & Configuration subsystem pro-
vides intuitive GUI for users to design workflows as
well as specify workflow configuration. It consists of
two major components. Design component provides a
web-based GUI allowing users to compose, edit and save
workflows. Workflows are edited in the browser window
(see Fig. 1) by dragging and dropping components and
input data products onto the design panel and connecting
them to the workflow. Once workflow is composed and
saved, the scientist uses the Configuration component,
which allows users to define the cloud-related workflow
settings using a dialog window. First, the user selects
among the available cloud providers (e.g., AWS, Future-
Grid, Rackspace, etc.). Then he chooses the number of
nodes and an instance type for each node. To help the
user make the decision, the system dynamically updates
the estimated running time of the workflow as well as
estimated cost given the current configuration. Once re-
sources are chosen, the user presses the “Run workflow”
button which sends a request to the Workflow Engine
to run the workflow. The latter forwards provisioning-
related information to the Cloud Resource Manager that
provisions virtual machines (slave nodes) according to
the user’s request. Once requested VMs have been pro-
visioned, the Workflow Engine executes the workflow.
This user-friendly interface addresses several challenges
outlined earlier, namely platforms heterogeneity chal-
lenge (connecting to the cloud and resource provision-
ing), as well as resource selection challenge. The system
contains the functionality to connect to different clouds,
provision and select resources thereby freeing the user
from having to do it manually.

The Workflow Engine is a central subsystem enabling
workflow execution. Its architecture is shown in Fig. 3b.
The Translator module is responsible for producing ex-
ecutable representations of workflows (in the case of
DATAVIEW these are Java objects) from the specifica-
tions written in our XML-based SWL language (Sci-
entific Workflow Language). These specifications are
stored in the Workflow Specification Repository. Work-
flow Configuration Management module captures re-
quired cloud-related settings to run the workflow. These
include the type of scheduler being used (HEFT, CPOP,
etc.), number and types of nodes in the cloud, and map-
ping of each component to the node where it is sched-
uled to execute. As these settings are specific to each
workflow and even to each workflow run and thus are

dynamically changed, they are stored in memory. At
runtime, the Workflow Configuration Management mod-
ule stores the schedule. For example, the schedule for
the workflow shown in Fig. 1 is as follows:

{

"Component2VMmap":{

"ExtrGasBrk":"VM1",

"AnalyzeGasBrk":"VM1",

"ExtrSpeedup":"VM2",

"AnalyzeSpeedup":"VM2",

"ExtrBrkngTurns":"VM3",

"AnalyzeBrkngTurns":"VM3",

"ComposeProfile":"VM1",

"ComputeGrade":"VM1"

},

"dependencies":[

"ComputeGrade":"Apache Mahout 0.9"

]

}

Dataflow management moves data products within
a virtual machine to ensure that every component re-
ceives each of its input data products as soon as it is
produced by an upstream component. Once all input
data are available, the component executes. After com-
ponent execution is finished, its output data are passed
to component-consumers (downstream components) and
those of them that are ready (i.e. all input data prod-
ucts are available) are executed. The process contin-
ues until all components execute, or until there are no
components that are ready to execute. The latter oc-
curs when, say one of the components fails. The EBS
Volume Management module leverages Elastic Block
Storage volumes to reduce workflow running time. EBS
volumes EC2 (2017) are raw block devices that can be
attached to running VM instances. For example, con-
sider a sample workflow scheduled to run in the cloud
using three virtual machines in Fig. 3d VM1, VM2, and
VM3, as shown in Fig. 1. Suppose the AnalyzeGasBrk
component produced a large output file on VM1 that
needs to be moved to the VM2 where ComposeProfile
is scheduled to execute. Instead of sending a large file
over the network, the system attaches an EBS volume to
VM1, stores output of AnalyzeGasBrk on that volume,
detaches the volume from VM1, and attaches the volume
to VM2, avoiding copying the file over the network alto-
gether. Thus, the EBS Volume Management addresses
the distributed computing challenge (supplying big data
products to consumer components).

The Profile Tracker module captures execution times
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of each component as well as the corresponding run-
time performance context during workflow run. The
runtime performance context describes factors affecting
component’s running time, such as the size and file type
of each input data product, the instance type of virtual
machine where component is running (e.g., m3.xlarge,
c2.xlarge, etc.), and the usage of CPU and memory by
this component. This information is persisted in Run-
time Performance Logs Storage. This also addresses the
distributed computing challenge (logging & workflow
monitoring).

When the user attempts to schedule a workflow, the
Runtime Behavior Analytics module uses runtime perfor-
mance context of each workflow component to predict
its running time and the overall workflow running time
and cost, for the run configuration selected by the user
(i.e. the number and types of virtual servers). Runtime
Behavior Analytics also enables guided semi-automated
cloud resource selection by generating hints suggest-
ing possible improvements the user can make to reduce
running time. For example, if certain component is
CPU-intensive, the system may suggest using compute
optimized instances such as c2.xlarge, over the general
purpose m3.xlarge to improve performance. Runtime Be-
havior Analytics relies on profile information collected
previously to make such predictions and generate hints.
Due to the nature of big data workflows decisions on the
number and types of instances are of great importance
as they dramatically affect workflow running time. Our
semi-automated scheduling process partially addresses
the resource selection challenge.

The Provenance Collector captures data derivation his-
tory in appropriate format such as OPMO OPM (2016)
and sends it to the Provenance Manager to be stored.
This addresses the provenance collection aspect of the
distributed computing challenge.

The Elastic Resource Management (ERM) module
intelligently requests to provision and terminate virtual
resources (such as VMs and storage volumes) before,
during, and after workflow execution, based on the work-
flow schedule, i.e. based on the current needs of the
workflow. As the need to provision additional resources
or terminate existing idle resources may arise during
workflow execution, the ERM module consults with Run-
time Behavior Analytics to determine the optimal time
to send the provisioning/termination request. For exam-
ple, consider the montage workflow shown in Fig. 2. As
the workflow execution proceeds, the number of parallel
branches in the workflow changes from four (initially),
to five, to four, and to one. The user chooses to run

the workflow with five virtual machines. The ERM
module initially provisions four VMs (VM1, VM2, VM3,
and VM4), before adding a fifth VM (VM5). During the
workflow execution, ERM requests provisioning of the
fifth VM (VM5), before mDiffFit is ready to execute, to
account for the time it takes to provision VM5. ERM
module relies on the information provided by Runtime
Behavior Analytics to determine at what point in time to
send the provisioning request for VM5. This is done to
avoid a pause in workflow execution. Once the mFitExec
task completes, Runtime Behavior Analytics determines
whether it is beneficial to terminate only VM5 and keep
VM1, VM2, VM3, and VM4 for the sake of executing four
instances of mBgExec in parallel, or to terminate all VMs
except VM1 and provision three new VMs once the exe-
cution reaches to mBgExec. Once mBgExec completes,
all VMs except VM1 are terminated. Dynamically in-
creasing and decreasing the amount of virtual resources
in this way allows to save cost during a workflow execu-
tion.

The Workflow Monitoring subsystem keeps track of
the statuses of individual components such as “initial-
ized”, “executing”, “finished”, “error”. Oftentimes, one
or several of the intermediate components of the work-
flow may fail and workflow re-run is needed. To save
time, it is helpful to “pick up” workflow execution from
where it was left after the partially successful run. Keep-
ing track of which components have successfully fin-
ished and produced output data enables such smart re-
runs. The monitoring information is sent from each
component to the master node. Besides smart re-run,
workflow monitoring is crucial as it enables profiling
(capturing component performance information), log-
ging and debugging. Thus, the Workflow Monitoring
subsystem addresses the logging/monitoring aspect of
the distributed computing challenge. The workflow mon-
itoring information captured from executing a sample
workflow, with ID = w89105, through the smart re-run
option in the DATAVIEW system looks as follows:

{

"workflowID-w89105":{

"status":"executing",

"cloud-resources":"192.10.5.24,

192.10.5.101, 192.12.6.41,

192.12.6.43, 192.12.6.55",

"tasks-finished":"T1,T2,T3,T10,T25",

"tasks-failed":"T21, T33, T59, T62",

"tasks-inprogress":"T50,T52,T53",

"data-produced":"T1.o1, T2.o1,

T2.o2, T3.o1, T3.o2, T3.03, T10.o1,
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T25.o1, T50.o1, T52.o1, T53.o1"

}

}

The Data Product Management subsystem stores all
data products used in workflows. Initially, all data prod-
ucts reside on the master node. Those data products
that are used by slave nodes are sent to the correspond-
ing VMs before the workflow execution begins. This
addresses the distributed computing challenge (passing
data products to consumer components).

The Provenance Management subsystem is responsi-
ble for storing, browsing, and querying workflow prove-
nance.

The Task Management subsystem enables executing
heterogeneous atomic tasks such as Web services and
scripts.

The Cloud Resource Management (CRM) subsystem
plays a key role in provisioning, cataloging, configur-
ing, and terminating virtual resources in the cloud. Its
architecture is shown in Fig. 3c.

The CRM subsystem consists of seven modules. The
VM Provisioning module is responsible for creating vir-
tual machines from images saved beforehand. These
images include the DATAVIEW Kernel needed to run
workflows. Machine Image Management maintains a
catalogue of machine images (e.g., Amazon and Euca-
lyptus Machine Images, or AMIs and EMIs respectively)
and metadata for each image. These metadata along
with all other metadata about available virtual resources
are stored in Virtual Resources Catalogue, which ad-
dresses the resource volatility challenge (Cataloging vir-
tual resources). The machine image metadata include
operating system, cloud provider, cloud platform, de-
pendencies satisfied in the image, libraries and software
installed, etc., and looks as follows:

{

"ami-f1536798":{

"os":"Ubuntu server x64 12.04",

"provider":"aws",

"platform":"ec2",

"dependencies":[

"python 3.3.3",

"Apache Mahout 0.9",

...

]

},

"emi-1C8C3ADF":{

"os":"Red Hat Linux",

"provider":"futuregrid",

"platform":"eucalyptus",

"dependencies":[

"perl 5.18.2",

"R 3.0.2",

...

]

},

...

}

The system relies on these metadata and on the sched-
ule to determine which machine image to use when
provisioning a VM to run a particular component. For
example, when provisioning VM for the ComputeGrade
component, the system will choose an image containing
the Apache Mahout – a required software to compute
the driver’s grade. In this way the system ensures that
the provisioned virtual machines have correct execu-
tion environment to run workflow components, which
addresses challenge resource volatility challenge (envi-
ronment setup).

While VM images provide a reliable solution for man-
aging dependencies, in many cases, it is possible to
package software components in lightweight containers,
managed by the docker platform Docker (2017). Docker
containers package a piece of software, including code,
runtime, system tools and libraries, i.e. everything that is
needed for successful execution. Thus, docker contain-
ers guarantee that the software will run in any environ-
ment that has the docker platform installed. To leverage
the docker platform for dependency management, we
propose two modules - Docker Image Management and
Container Provisioning. The Docker Image Manage-
ment module allows to create lightweight docker images,
capturing all the dependencies and libraries that a work-
flow component relies on. The docker images are often
orders of magnitude smaller in size than the equivalent
VM images. For example, the base Ubuntu image avail-
able on the Docker Hub, a registry for docker images, is
only 188 Mb in size. In contrast, the size of an Ubuntu
image available in Amazon EC2 cloud is 8Gb.

Consider a workflow in Fig. 2 that creates a mosaic
of sky images. Each component of this workflow relies
on montage software for performing its computations.
Whenever a component is scheduled to run on a VM,
the Container Provisioning module will create a docker
container inside this VM, using appropriate docker im-
age, i.e. one that contains montage software. Thus,
the workflow component can execute successfully. This
eliminates the need to create a large VM image. In the
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context of running big data workflows in the cloud, us-
ing docker images for managing dependencies provides
three important advantages:

1. Lightweight support of a large number of diverse
components that require a broad range of libraries,
software packages, and environment variables.

2. Better reuse of idle virtual machines. If a spare VM
is available that lacks certain dependencies to run
a workflow component, container(s) featuring the
required packages can be deployed in this VM to
enable its reuse.

3. Isolation of each component’s dependencies. Multi-
ple docker containers can be deployed inside a VM,
with each container’s dependencies being fully iso-
lated from other containers. This is crucial when
two or more components with conflicting sets of
dependencies are scheduled to run on the same VM.
Some components, for example, may require dif-
ferent versions of python. Therefore, using docker
images also improves resource utilization.

In situations when docker containers cannot be em-
ployed (e.g., for Windows-based workflow components),
the traditional VM images must be used.

The EBS Volume Provisioning module creates block
storage volumes used by the EBS Volume Management
module of the Workflow Engine to efficiently move big
data in the cloud, which addresses distributed computing
challenge (passing data products to consumers). Once
an EBS volume is created and attached to the running
instance, it generally requires formatting, an operation
that can take up to several minutes. To avoid such a de-
lay, DATAVIEW relies on snapshots that already contain
file system to create EBS Volumes. For this purpose,
CRM contains the Snapshot Management module that
maintains a list of volume snapshots in the Virtual Re-
source Catalogue. Snapshot Management is responsible
for updating the list and for communicating to the EBS
Volume Provisioning module which snapshot is needed
for a particular workflow. S3 Provisioning persists out-
put data products to ensure that after slave nodes are
terminated, the data are still available. This addresses
the resource volatility challenge (persisting output data
products).

VM Access Management module captures informa-
tion required for accessing virtual machines, such as
credentials, security keys, paths to the DATAVIEW sys-
tem folders, environment variable names, etc.

4. IMPLEMENTATION AND CASE
STUDY

We implemented the proposed DATAVIEW architec-
ture as a Web-based application, written in Java. To test
our implementation and validate our proposed architec-
ture we have deployed DATAVIEW in Amazon EC2 EC2
(2017) as well as the Futuregrid’s Eucalyptus and Open-
stack FutureSystems (2017). We ran several workflows
in these cloud environments. As the results were similar
in different cloud environments, due to space limit here
we report the results obtained in the Amazon EC2.

We ran a big data workflow from the automotive do-
main in the Amazon EC2 cloud. The implementation
and case study show how our architecture addresses
the platform heterogeneity, resource volatility, and dis-
tributed computing challenges. We are extending our
system functionality to address the resource volatility
challenge.

4.1 DATAVIEW IMPLEMENTATION IN THE
CLOUD

DATAVIEW is based on our earlier general purpose
SWFMS called VIEW. It extends VIEW with additional
functionality that enables workflow execution in the
cloud environment, including the new Workflow Engine
and Cloud Resource Manager subsystems.

Fig. 1 shows the Web-based GUI on DATAVIEW. The
sidebar on the left-hand side lists the executable work-
flows, as well as reusable workflows (i.e. tasks, or build-
ing blocks). The workflow itself is built by dragging-
and-dropping reusable components onto the DATAVIEW
workspace.

Upon completing the workflow design via
DATAVIEW’s intuitive drag-and-drop interface,
the user presses the “Provision VMs” button on the
DATAVIEW toolbar to allocate virtual machines for
workflow execution. The user specifies the number
of VMs, and the type of each machine using a dialog
shown in Fig. 4.

Our CRM subsystem programmatically provisions,
configures, and terminates virtual resources (in the case
of EC2 using AWS SDK for Java). To create slave nodes,
we have registered in the cloud several VM images with
DATAVIEW Kernel.

4.2 CASE STUDY: ANALYZING DRIVING
COMPETENCY FROM THE VEHICLE DATA

We have built a big data workflow analyzing driver’s
competency on the road. Our workflow, (Fig. 1) takes
as input dataset in the OpenXC format OpenXC (2016).
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Figure 4: Provisioning virtual machines in DATAVIEW.

OpenXC is a platform that allows to collect vehicle data
while on the road, using a hardware module installed
in the car. The collected data includes steering wheel
angle, vehicle speed, accelerator pedal position, brake
pedal status, etc. For our experiments we have created a
synthetic dataset built from the real data recorded while
driving in Manhattan, NY OpenXC (2016).

Our dataset is equivalent to 1 hour worth of data, col-
lected from 50 drivers making the size of the input file
3Gb Kashlev & Lu (2014a). The workflow derives com-
petency of each driver based on: 1) How often does the
driver accelerate and then suddenly brakes? (Analyze-
GasBrk) 2) How smoothly does the driver accelerate?
(AnalyzeSpeedup) and 3) How gradually does the driver
brake before making a turn? (AnalyzeBrkngTurns) Our
workflow first extracts data related to acceleration and
braking, speedup, and braking before turns using Extr-

GasBrk, ExtrSpeedup,and ExtrBrkngTurns components.
It then analyzes each of these three factors and derives a
number characterizing each of the three aspects of driv-
ing. The lower the number is the better the driver is at
this aspect. Once these three numbers are obtained for
each driver, they are composed into a driving profile (csv
file) by the ComposeProfile component. This profile is
then passed to a ComputeGrade component, which uses
a classifier called driver.model, built as a logistics regres-
sion using Apache Mahout. The ComputeGrade module
uses the classifier to determine whether the driver has
passed the competenency test and produces a final result
of the workflow – driving skill assessment report, which
is displayed in a pop-up window by DATAVIEW (Fig. 5).
Although the version of statistical analysis algorithms
used in this study is relatively simple, we are currently
improving its accuracy to account for the fine nuances
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Figure 5: Screenshot of the driving skill assessment report produced by our big data workflow in the DATAVIEW system.

Figure 6: Running big data workflow from the automotive domain in Amazon EC2 with different number of nodes.

of the vehicle driving and developing more sophisticated
algorithms to assess the driving skill. For the purpose
of experiments and to better test our DATAVIEW archi-
tecture in the cloud we have injected a dummy CPU-
intensive code into the AnalyzeGasBrk, AnalyzeSpeedup,
and AnalyzeBrkngTurns components. In Fig. 6 we report
the performance study results from running our scien-
tific workflow in the Amazon EC2. Our system used the
HEFT algorithm Topcuoglu et al. (2002) to schedule the
workflow onto the VMs. As shown in Fig. 6, workflow
analysis time decreases when more slave nodes involved
in running the workflow as more machines are used to
perform the same amount of data processing. As we ex-
plain in the next subsection, we ran the workflow in two
modes: 1) moving the data to target virtual machines
using traditional file transfer protocol scp, and 2) mov-
ing the data using the proposed EBS volume movement

technique. In the first case the total workflow running
time was 8,569, 6676, and 4253 seconds for one, two,
and three slave nodes respectively. When using our pro-
posed technique the makespan decreased to 8391, 6047,
and 3283 sec. for one, two, and three nodes respectively.
Faster data movement technique reduced the makespan
in all three configurations. The time to provision VMs
averaged at 27 seconds.

4.3 CASE STUDY: BUILDING SKY IMAGE
MOSAIC

We designed and ran montage workflow from the as-
tronomy domain3, shown in Fig. 2. We ran the workflow

3This research made use of Montage. It is funded by the National
Science Foundation under Grant Number ACI-1440620, and was previ-
ously funded by the National Aeronautics and Space Administration’s
Earth Science Technology Office, Computation Technologies Project,
under Cooperative Agreement Number NCC5-626 between NASA
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in the Amazon EC2 cloud using our DATAVIEW system.
We successfully executed the montage workflow in a
distributed fashion across 20 virtual machines. While
executing in parallel across these 20 virtual machines,
our workflow has processed and reprojected 4.2 Gb of
astronomical image data. The workflow execution time
was 67s. The workflow creates a mosaic of astronomical
images in the popular .fits format. The MakeList compo-
nent helps wrap a set of images in a list structure. First,
the mProjectPP component reprojects each image to the
scale defined in the FITS header template (template.hdr
file). Next, the mImgTbl component extracts the FITS
header geometry information from a set of files and cre-
ates an ASCII image metadata table which is used by
several of the other programs. The mProjectPPmImgtbl
component, which consists of mProjectPP and mImgtbl,
produces a pair of images: the reprojected image and
an “area” image. The area image goes through all the
subsequent processing that the reprojected image does,
allowing it to be properly coadded at the end. Once
the images.tbl file has been produced by mMergeImgs,
the mOverlaps component analyzes the image metadata
table to determine a list of overlapping images. Each im-
age is compared with every other image to determine all
overlapping image pairs. A pair of images are deemed
to overlap if any pixel around the perimeter of one im-
age falls within the boundary of the other image. The
result is the diffs.tbl file. Next, the mDiffFit function is
called to calculate the difference between a single pair
of overlapping images, and to fit a plane to an image
using least squares. After this, mDifExec creates a table
of image-to-image difference parameters, stored in the
fits.tbl file. The mBgModel function uses the image-to-
image difference parameter table created by mDifExec
to interactively determine a set of corrections to apply to
each image in order to achieve “best” global fit. mAdd
coadds the reprojected images in an input list to form an
output mosaic with FITS header keywords specified in a
header file. It creates two output files, one containing the
coadded pixel values, and the other containing coadded
pixel area values. Finally, the mJPEG function generates
a JPEG image file from the .fits file produced by mAdd.

4.4 MOVING BIG DATA WITHIN THE CLOUD

We have implemented our proposed big data move-
ment technique that supplies large files to target VMs by
attaching EBS volumes containing required files to the
virtual machines that consume these files. To test our
technique we have measured the time to transfer our 3

and the California Institute of Technology.

Figure 7: Moving 3Gb dataset to the target VM.

Gb dataset from one virtual machine to another when
using traditional file transfer protocol and when using
our proposed technique. The results are shown in Fig. 7.

As the obtained results confirm, the proposed tech-
nique allows to transfer big data files at reasonable rates
even when network performance is limited. We assume
that the EBS volume used to supply data to the target
virtual machine exists in the same region as the machine
itself. Since the region of the volume is specified explic-
itly at volume creation time and thus is in our control,
this assumption is easy to meet. The higher the fraction
of data movement time is in the overall execution time,
the larger is the performance gain attained with our EBS
volume movement technique. This explains why the per-
formance improvement is higher for three nodes than for
two or one node (Fig. 6), since more nodes require more
data movement. For more data-intensive workflows such
performance gain is even larger.

5. RELATED WORK

In the age of big data the unprecedented access to on-
demand computing resources makes cloud an essential
paradigm, as it enables everyone, even small research
teams, to dynamically build virtualized cyberinfrastruc-
tures for running their large-scale scientific workflows
in order to extract knowledge and value from big data.
The need to utilize cloud computing to run scientific
workflows has been widely recognized by the scien-
tific community Zhao et al. (2011); Deelman (2015);
Zhao et al. (2015); de Oliveira et al. (2012). Many re-
searchers studied and confirmed the feasibility of using
cloud computing for e-science from both cost Deelman
et al. (2008) and performance perspectives Iosup et al.
(2011); de Oliveira et al. (2013).
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In Deelman (2010), E. Deelman describes mapping
workflows onto grid resources, discusses various tech-
niques for improving performance and reliability, and
reflects on their use in the cloud. Zhao et al. discuss
various challenges for running scientific workflows in
the Cloud as well as identify research directions in this
area Zhao et al. (2011). Ostermann and Prodan Oster-
mann & Prodan (2012) analyze the problem of provision-
ing Cloud instances to large scientific workflows, and
show how Spot instances can be used for scientific work-
flow execution. Juve et al. examine the performance
and cost of clouds when executing scientific workflow
applications, and consider three different workflows of
different I/O, Memory, and CPU intensity.

A number of efforts were made towards building
systems for running scientific workflows in the cloud.
In Vöckler et al. (2011), Vöckler et al. demonstrate that
the Condor system and the DAGMan engine, originally
developed for running jobs in the grid environment can
also be extended to run workflows in the cloud. In Wu
et al. (2013), Wu et al. focus on QoS-constraint based
scheduling of workflows in clouds. The authors discuss
at high level the architecture of their system running in a
simulated cloud. Oliveira et al. de Oliveira et al. (2010)
present SciCumulus, a cloud middleware that explores
parameter sweep and data fragmentation parallelism in
scientific workflow activities. The authors present a con-
ceptual architecture geared towards parameter sweep and
data fragmentation and run their system in the simulated
cloud. In Abouelhoda et al. (2012) Abouelhoda et al.
propose a system called Tavaxy that allows seamless in-
tegration of the Taverna system with Galaxy workflows
based on hierarchical workflows and workflow patterns.
Tavaxy has an interface to set up a cluster in AWS cloud
and use it to run workflows. Wang et al. Wang & Altin-
tas (2012) report preliminary work and experiences of
enabling the interaction between Kepler SWFMS and
the EC2 cloud. In Vahi et al. (2013), Vahi et al. dis-
cuss usage of object stores and shared file systems for
managing data products in big data scientific workflows.

While these solutions provide some insights into de-
velopment of SWFMSs in the cloud, they are often
geared towards particular domains such as bioinfor-
matics Abouelhoda et al. (2012); Emeakaroha et al.
(2013), astronomy Vöckler et al. (2011), or can run
workflows of particular kinds such as parameter sweep
workflows de Oliveira et al. (2010) or QoS-annotated
workflows Wu et al. (2013). Besides, many systems pro-
vide limited support for resource provisioning either by
depending on a third party software to choose and pro-

vision virtual resources Deelman (2010); Pandey et al.
(2011) or user to do the provisioning manually Vöckler
et al. (2011); Deelman (2010). Finally, such systems are
often configured to work with specific cloud Wang &
Altintas (2012) or simulated environments de Oliveira
et al. (2010); Yuan et al. (2010).

These solutions, many of which are ad hoc in nature,
do not address the breadth of challenges that we identify.
There is a pressing need for a generic, implementation-
and platform-independent architectural solution that
would address the cloud-related challenges for build-
ing cloud-enabled BDWFMSs.

To address this need, we propose a generic,
technology-independent architecture of cloud-enabled
BDWFMS including its subsystems and their interac-
tions. We also present our DATAVIEW system which
delivers a specific implementation of our architecture.

6. CONCLUSIONS AND FUTURE
WORK

In this paper, we first identified five key challenges
of running big data workflows in the cloud. Second,
we proposed a generic implementation-independent sys-
tem architecture that provides guidance for different
implementations of BDWFMSs in the cloud and ad-
dresses most of the challenges discussed. Third, we
implemented the DATAVIEW system that delivers a spe-
cific implementation of our architecture and ran two big
data workflows in Amazon EC2 cloud to validate our
system architecture. In the future, we plan to explore
workflow scheduling techniques in the cloud that take
advantage of workflow profiling and runtime behavior
analytics module. We will also create more large-scale
big data workflows from the automotive domain as well
as workflows from bioinformatics and Internet of Things
(IoT) domains.
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